Vol. 4, Issue, 03, pp.132-136, March, 2012

RESEARCH ARTICLE

SCHUR COMPLEMENTS PIVOTAL TRANSFORMATION ON CON-s-k-EP MATRICES

Krishnamoorthy, \mathbf{S}^{*} and Muthugobal, B.K.N.

Ramanujan Research Centre, Department of Mathematics, Govt. Arts College (Autonomous), Kumbakona612001, Tamilnadu, India.

ARTICLE INFO

Article History:

Received $25^{\text {th }}$ December, 2011
Received in revised form
$30^{\text {th }}$ January, 2011
Accepted $13^{\text {th }}$ February, 2011
Published online $31^{\text {st }}$ March, 2012

Key words:

Con-s-k-EP matrices, partitioned
matrices, schur complements, pivotal
transformation matrices.

Abstract

Necessary and sufficient conditions are determined for a schur complement Pivotal Transformation in a con-s-k-EP matrix to be con-s-k-EP. Further it is shown that in a con-s-k-EP E_{r} Matrix, every secondary sub matrix of rank ' r ' is con-s- $k-E P_{r}$. Also discussed the question of expressing a matrix of rank r as a product of con-s- $k-E P_{r}$ matrix. A necessary and sufficient condition for products of con-s-k-EPr Partitioned matrices to be con-s-k-EPr is given. AMS classification: 15A09, 15A15, 15A57

INTRODUCTION

Throughout we shall deal with $\mathrm{C}_{\mathrm{nxn}}$ the space of nxn complex matrices. Let C_{n} be the space of complex n-tuples. For $\mathrm{A} \in$ $C_{n x n}$, let $A^{T} A^{*}$ and A^{\dagger} denotes the transpose, conjugate transpose and Moore Penrose inverse of A respectively. A matrix A is called con-s-k-EP if $\rho(A)=r$ and $\mathrm{N}(\mathrm{A})=\mathrm{N}\left(\mathrm{A}^{\mathrm{T}} \mathrm{VK}\right)$ or $\mathrm{R}(\mathrm{A})=\mathrm{R}\left(\mathrm{KVA}^{\mathrm{T}}\right)$ where $\rho(A)$ denotes the rank of $A, N(A)$ and $R(A)$ denotes the null space and range space of A respectively. Throughout let ' k ' be the fixed product of disjoint transposition in $\mathrm{S}_{\mathrm{n}}=1,2$, n and K be the associated permutation matrix. Let us define the function $\boldsymbol{R}(x)=\left(x_{\boldsymbol{k}(1)}, x_{\boldsymbol{k}(2)}, \ldots, x_{\boldsymbol{k}(\boldsymbol{n})}\right)$. A matrix $\mathrm{A}=\left(\mathrm{a}_{\mathrm{ij}}\right) \in$ $\mathrm{C}_{\mathrm{nxn}}$ is s-k symmetric if $\mathrm{a}_{\mathrm{ij}}=\mathrm{a}_{\mathrm{n}-\mathrm{k}(\mathrm{j})+1, \mathrm{n}-\mathrm{k}(\mathrm{i})+1}$ for $\mathrm{i}, \mathrm{j}=1,2, \ldots . \mathrm{n}$. A matrix $\mathrm{A} \in \mathrm{C}_{\mathrm{nxn}}$ is said to be con-s-k-EP if it satisfies the condition $\mathrm{A} x=0 \Leftrightarrow A^{S} \mathrm{k} \quad(x)=0$ or equivalently $\mathrm{N}(\mathrm{A})=\mathrm{N}\left(\mathrm{A}^{\mathrm{T}} \mathrm{VK}\right)$. In addition to that A is con-s-k-EP \Leftrightarrow KVA is con-EP or AVK is con-EP and A is con-s-k-EP \Leftrightarrow A^{T} is con-s-k-EP. Moreover A is said to be con-s-k-EP ${ }_{r}$ if A is con-s-k-EP and of rank r. For further properties of con-s-k-EP matrices one may refer [3]. In this paper we give necessary and sufficient conditions for a schur complement pivotal transformation in a con-s-k-EP matrix to be con-s-kEP. Further it is shown that in a con-s-k- EP_{r} matrix, every secondary sub matrix of rank r is con-s-k-EP r_{r}. Also discussed the question of expressing a matrix of rank r as a product of con-s-k-EP ${ }_{r}$ matrices. Necessary and sufficient conditions for

[^0]products of con-s-k-EP ${ }_{r}$ partitioned matrices to be con-s-k-EP ${ }_{r}$ are given. In this sequel, we need the following theorems.

Theorem 1.1[2]. For $A, B \in C_{n x n}$, the following hold:

$$
\begin{align*}
& \rho\left(A A^{*}\right)=\rho\left(A^{*} A\right)=\rho(A)=\rho\left(A^{T}\right) \tag{i}\\
& =\rho\left(A^{*}\right)=\rho(\bar{A})=\rho\left(A^{\dagger}\right)
\end{align*}
$$

$$
\begin{equation*}
\rho(A B)=\rho(B)-\operatorname{dim} N\left((A) \cap N\left(B^{*}\right)^{\perp}\right) \tag{ii}
\end{equation*}
$$

Theorem 1.2[1]. Let $A, B \in C_{n x n}$, and $U \in C_{n x n}$ be any non singular matrix. Then,

$$
\begin{align*}
& R(A)=R(B) \Leftrightarrow R\left(U A U^{*}\right)=R\left(U B U^{*}\right) \tag{i}\\
& N(A)=N(B) \Leftrightarrow N\left(U A U^{*}\right)=N\left(U B U^{*}\right)
\end{align*}
$$

Theorem 1.3 [9]. Let $A, B \in C_{n x n}$, Then

$$
\begin{align*}
& N(A) \subseteq N(B) \Leftrightarrow R\left(B^{*}\right) \subseteq R\left(A^{*}\right) \tag{i}\\
& \Leftrightarrow B=B A^{-} A \text { for all } A^{-} \in A\{1\} \\
& N\left(A^{*}\right) \subseteq N\left(B^{*}\right) \Leftrightarrow R(B) \subseteq R(A) \tag{ii}\\
& \Leftrightarrow B=A A^{-} B \text { for every } A^{-} \in A\{1\}
\end{align*}
$$

Definition 1.4[3]. Let M be an nxn matrix of the form $M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) . \quad$ A schur complement of A in M is $(M / A)=D-C A^{-} B$.

Theorem 1.5 (Theorem 1 [4]). Let $M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$, Then $\rho(M) \geq \rho(A)+\rho(M / A)$
With equality if and only if
$N(M / A) \subseteq N\left(\left(I-A A^{\dagger}\right) B\right)$
$N(M / A)^{*} \subseteq N\left(\left(I-A^{\dagger} A\right) C^{*}\right)$ and
$\left(I-A A^{\dagger}\right) B(M / A)^{\dagger} \subset\left(I-A^{\dagger} A\right)=0$
In particular, we have the equality if M satisfies
$N(A) \subseteq N(C)$ and $N\left(A^{*}\right) \subseteq N\left(B^{*}\right)$.
Theorem 1.6(Theorem 1 [3] and [8]). Let
$M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$, Then
$M^{\dagger}=\left(\begin{array}{cc}A^{\dagger}+A^{\dagger} B(M / A)^{\dagger} C A & -A^{\dagger} B(M / A)^{\dagger} \\ -(M / A)^{\dagger} C A^{\dagger} & (M / A)^{\dagger}\end{array}\right)$
$\Leftrightarrow N(A) \subseteq N(C), N\left(A^{*}\right) \subseteq N\left(B^{*}\right)$,
$N(M / A)^{*} \subseteq N\left(C^{*}\right)$ and $N(M / A) \subseteq N(B)$
Also, $M^{\dagger}=\left(\begin{array}{cc}(M / D)^{\dagger} & -A^{\dagger} B(M / A)^{\dagger} \\ -D^{\dagger} C(M / D)^{\dagger} & (M / A)^{\dagger}\end{array}\right)$
$\Leftrightarrow N(A) \subseteq N(C), N\left(A^{*}\right) \subseteq N\left(B^{*}\right)$,
$N(M / D)^{*} \subseteq N\left(B^{*}\right) N(M / D) \subseteq N(C)$.
When, $\rho(M)=\rho(A)$ then $M=\left(\begin{array}{cc}A & B \\ C & C A^{-} B\end{array}\right)$ and
$M=\left(\begin{array}{ll}A^{*} P A^{*} & A^{*} P C^{*} \\ B^{*} P A^{*} & B^{*} P C^{*}\end{array}\right)$ where
$P=\left(A A^{*}+B B^{*}\right)^{-} A\left(A^{*} A+C^{*} C\right)^{-}$

2. PIVOTAL TRANSFORMATION ON CON-S-K-EP MATRICES

In this section we have given necessary and sufficient conditions for a con-s-k-EP matrix to have its secondary sub matrices and their schur complement to be con-s-k-EP. This is a generalization of the result found in [7]. As an application it is shown that the property of a matrix being con-s-k-EP E_{r} is persevered under the secondary pivot transformation. It is well known that Theorem (1.2) [7], the class of con-EP matrices is invariant under secondary rearrangement. By a secondary rearrangement of a sequence matrix M, we mean a matrix $\mathrm{P}^{\mathrm{T}} \mathrm{MP}$

Where P is a permutation matrix $\left(\begin{array}{ll}0 & I \\ I & 0\end{array}\right)$. By a secondary rearrangement of a square matrix M , we mean a matrix P^{T} VMP. Similarly the secondary k rearrangement of a square matrix M we mean a matrix $\mathrm{P}^{\mathrm{T}} \mathrm{KVMP}$.
Let M be a matrix of the form $M=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$
and let S be a matrix of the form $S=\left(\begin{array}{ll}(M / A) & (M / B) \\ (M / C) & (M / D)\end{array}\right)$ (2.2)
$\mathrm{K}=\left(\begin{array}{cc}\mathrm{k}_{1} & 0 \\ 0 & \mathrm{k}_{2}\end{array}\right)$ and $V=\left(\begin{array}{ll}0 & v \\ v & 0\end{array}\right)$. Now,
$\mathrm{KVS}=\left[\begin{array}{ll}\mathrm{K}_{1} v(\mathrm{M} / \mathrm{C}) & \mathrm{K}_{1} v(\mathrm{M} / \mathrm{D}) \\ \mathrm{K}_{2} v(\mathrm{M} / \mathrm{A}) & \mathrm{K}_{2} v(\mathrm{M} / \mathrm{B})\end{array}\right]$
Then,

$$
\begin{aligned}
& \mathrm{P}^{\mathrm{T}}(\mathrm{KVS}) \mathrm{P}=\left(\begin{array}{ll}
0 & \mathrm{I} \\
\mathrm{I} & 0
\end{array}\right)\left[\begin{array}{ll}
\mathrm{K}_{1} v(\mathrm{M} / \mathrm{C}) & \mathrm{K}_{1} v(\mathrm{M} / \mathrm{D}) \\
\mathrm{K}_{2} v(\mathrm{M} / \mathrm{A}) & \mathrm{K}_{2} v(\mathrm{M} / \mathrm{B})
\end{array}\right]\left(\begin{array}{ll}
0 & \mathrm{I} \\
\mathrm{I} & 0
\end{array}\right) \\
&=\left[\begin{array}{ll}
\mathrm{K}_{2} v(\mathrm{M} / \mathrm{A}) & \mathrm{K}_{2} v(\mathrm{M} / \mathrm{B}) \\
\mathrm{K}_{1} v(\mathrm{M} / \mathrm{C}) & \mathrm{K}_{1} v(\mathrm{M} / \mathrm{D})
\end{array}\right] \quad\left(\begin{array}{ll}
0 & \mathrm{I} \\
\mathrm{I} & 0
\end{array}\right) \\
&=\left[\begin{array}{ll}
\mathrm{K}_{2} v(\mathrm{M} / \mathrm{B}) & \mathrm{K}_{2} v(\mathrm{M} / \mathrm{A}) \\
\mathrm{K}_{1} v(\mathrm{M} / \mathrm{D}) & \mathrm{K}_{1} v(\mathrm{M} / \mathrm{C})
\end{array}\right]
\end{aligned}
$$

Let us consider a system of linear equation $\mathrm{SZ}=\mathrm{t}$ where S is of the form [2.2] satisfy $N(M / C) \subseteq N(M / A)$ and $\mathrm{N}(\mathrm{M} / \mathrm{C})^{\mathrm{T}} \subseteq \mathrm{N}(\mathrm{M} / \mathrm{D})^{\mathrm{T}}$. If Z and t are partitioned conformably as $Z=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $t=\left[\begin{array}{l}u \\ w\end{array}\right]$ then the system becomes $\left[\begin{array}{ll}(\mathrm{M} / \mathrm{A}) & (\mathrm{M} / \mathrm{B}) \\ (\mathrm{M} / \mathrm{C}) & (\mathrm{M} / \mathrm{D})\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}u \\ w\end{array}\right]$
$\Rightarrow \quad(M / A) x+(M / B) y=u$
$(M / C) x+(M / D) y=w$
Since S satisfies $N(M / C) \subseteq N(M / A)$ and
$N(M / C)^{T} \subseteq N(M / D)^{T}$.
Using $(M / A)=(M / A)(M / C)^{-}(M / C)$ and
$(\mathrm{M} / \mathrm{D})=(\mathrm{M} / \mathrm{C})^{-}(\mathrm{M} / \mathrm{C})(\mathrm{M} / \mathrm{D})($ Theorem (1.3)) we can solve \mathbf{x} and w as,
$x=(M / C)^{\dagger} u-(M / C)^{\dagger}(M / D) y$;
$w=(M / A)(M / C)^{\dagger} u+(M / B)-(M / A)(M / C)^{\dagger}(M / D) y$.
Thus a matrix S of the form (2.2), that satisfies $\mathrm{N}(\mathrm{M} / \mathrm{C}) \subseteq \mathrm{N}(\mathrm{M} / \mathrm{A})$ and $\mathrm{N}(\mathrm{M} / \mathrm{C})^{\mathrm{T}} \subseteq \mathrm{N}(\mathrm{M} / \mathrm{D})^{\mathrm{T}}$ can be transformed into the matrix
$\tilde{\mathrm{S}}=\left[\begin{array}{cc}(M / C)^{\dagger} & -(M / C)^{\dagger}(M / D) \\ (M / A)(M / C)^{\dagger} & {[S /(M / D)]}\end{array}\right]$

S
is called a secondary pivot transform of S . The operation that transforms $\mathrm{S} \rightarrow \tilde{\mathrm{S}}$ is called secondary pivot.
Lemma 2.1. Let S be a matrix of the form (2.2) with $\mathrm{N}(\mathrm{M} / \mathrm{C}) \subseteq \mathrm{N}(\mathrm{M} / \mathrm{A}) \quad$ and $\quad \mathrm{N}(\mathrm{M} / \mathrm{B}) \subseteq \mathrm{N}(\mathrm{M} / \mathrm{D})$. Then the following are equivalent.
(i) $\quad \mathrm{S}$ is con-s-k-EP with $\mathrm{k}=\mathrm{k}_{1} \mathrm{k}_{2}$ Where

$$
\begin{aligned}
& \mathrm{K}=\left[\begin{array}{cc}
\mathrm{K}_{1} & 0 \\
0 & \mathrm{~K}_{2}
\end{array}\right], \quad \mathrm{V}=\left[\begin{array}{cc}
0 & \mathrm{~V} \\
\mathrm{~V} & 0
\end{array}\right] \\
& \mathrm{N}[\mathrm{~S} /(\mathrm{M} / \mathrm{C})] \subseteq \mathrm{N}(\mathrm{M} / \mathrm{D}) \text { and } \\
& \mathrm{N}[\mathrm{~S} /(\mathrm{M} / \mathrm{B})] \subseteq \mathrm{N}(\mathrm{M} / \mathrm{A})
\end{aligned}
$$

(ii) $\quad(\mathrm{M} / \mathrm{C})$ and $[\mathrm{S} /(\mathrm{M} / \mathrm{D})]$ are con-s-k$-\mathrm{EP},(\mathrm{M} / \mathrm{B})$ and $[\mathrm{S} /(\mathrm{M} / \mathrm{C})]$ are con-s- $\mathrm{k}_{2}-\mathrm{EP}$.
Further
$\mathrm{N}(\mathrm{M} / \mathrm{C})=\mathrm{N}[\mathrm{S} /(\mathrm{M} / \mathrm{B})] \subseteq \mathrm{N}\left((\mathrm{M} / \mathrm{D})^{\mathrm{T}} \vee \mathrm{K}_{1}\right)$
and
$N(M / B)=N[S /(M / C)] \subseteq N\left((M / A)^{T} \vee K_{2}\right)$.
Proof. Since S is con-s-k-EP with $\mathrm{k}=\mathrm{k}_{1} \mathrm{k}_{2}$ where
$\mathrm{K}=\left[\begin{array}{cc}\mathrm{K}_{1} & 0 \\ 0 & \mathrm{~K}_{2}\end{array}\right], \mathrm{V}=\left[\begin{array}{ll}0 & \mathrm{~V} \\ \mathrm{~V} & 0\end{array}\right]$,
$\mathrm{N}(\mathrm{M} / \mathrm{C}) \subseteq \mathrm{N}(\mathrm{M} / A)$ and $\mathrm{N}[\mathrm{S} /(\mathrm{M} / \mathrm{C})] \subseteq \mathrm{N}(\mathrm{M} / \mathrm{D})$
(by Theorem 2.5 [5]) (M/C) is
con-s-k k_{1}-EP $[\mathrm{S} /(\mathrm{M} / \mathrm{C})]$ is con-s-k k_{2} - EP .
$\mathrm{N}(\mathrm{M} / \mathrm{C})=\mathrm{N}\left((\mathrm{M} / \mathrm{D})^{\mathrm{T}} \vee \mathrm{K}_{1}\right)$ and
$N\left([S /(M / C)]^{T} \nu K_{2}\right) \subseteq N\left((M / A)^{T} \vee K_{2}\right)$.
Since (M/C) is con-s-k $\mathrm{k}_{1}-\mathrm{EP}$,
$\mathrm{N}\left((\mathrm{M} / \mathrm{C})^{\mathrm{T}} \vee \mathrm{K}_{2}\right)=\mathrm{N}(\mathrm{M} / \mathrm{C})$ [by definition of con-s-kEP matrix]. Therefore
$N\left((M / C)^{T} V K_{2}\right) \subseteq N\left((M / D)^{T} V K_{2}\right)$. Since S is con-s-k-EP, KVS is con-EP implies the secondary rearrangement $\mathrm{P}^{\mathrm{T}} \mathrm{KVSP}=\left[\begin{array}{ll}\mathrm{K}_{2} V(\mathrm{M} / \mathrm{B}) & \mathrm{K}_{2} V(\mathrm{M} / \mathrm{A}) \\ \mathrm{K}_{1} V(\mathrm{M} / \mathrm{D}) & \mathrm{K}_{1} V(\mathrm{M} / \mathrm{C})\end{array}\right]$ is also con-EP.
Further $N\left(K_{2} \mathrm{~V}(\mathrm{M} / \mathrm{B})\right) \subseteq \mathrm{N}\left(\mathrm{K}_{1} \mathrm{~V}(\mathrm{M} / \mathrm{D})\right)$ and
$N\left(K_{1} v[S /(M / B)]\right) \subseteq N\left(K_{2} v(M / A)\right)$ hold. Hence by (Theorem (2.5) [6]) $\quad \mathrm{K}_{2} \mathrm{~V}(\mathrm{M} / \mathrm{B})$ is con- EP .
$K_{1} V[S /(M / B)]$ is con-EP,
$N\left(K_{2} \vee(M / B)\right)^{T} \subseteq N\left(K_{2} \vee(M / A)\right)^{T}$ and
$\mathrm{N}\left(\mathrm{K}_{1} \vee[\mathrm{~S} /(\mathrm{M} / \mathrm{B})]\right)^{\mathrm{T}} \subseteq \mathrm{N}\left(\mathrm{K}_{2} \vee(\mathrm{M} / \mathrm{D})\right)^{\mathrm{T}}$. Thus we have (M / B) is con-s-k $k_{2}-E P,[S /(M / B)]$ is con-s-k $-E P$
$\mathrm{N}\left((\mathrm{M} / \mathrm{B})^{\mathrm{T}} \vee \mathrm{K}_{2}\right) \subseteq \mathrm{N}\left((\mathrm{M} / \mathrm{A})^{\mathrm{T}} \vee \mathrm{K}_{2}\right)$ and
$\mathrm{N}[\mathrm{S} /(\mathrm{M} / \mathrm{B})] \subseteq \mathrm{N}\left((\mathrm{M} / \mathrm{D})^{\mathrm{T}} \vee \mathrm{K}_{1}\right)$.

Since (M / B) is con-s- $k_{2}-E P$. By definition
$\mathrm{N}\left((\mathrm{M} / \mathrm{B})^{\mathrm{T}} \mathrm{VK}_{2}\right)=\mathrm{N}(\mathrm{M} / \mathrm{B})$.
Thus $N(M / B) \subseteq N\left((M / A)^{T} \nu K_{2}\right)$. Since the relations $\mathrm{N}(\mathrm{M} / \mathrm{C}) \subseteq \mathrm{N}(\mathrm{M} / \mathrm{A})$,
$\mathrm{N}\left((\mathrm{M} / \mathrm{C})^{\mathrm{T}} \vee \mathrm{K}_{1}\right) \subseteq \mathrm{N}\left((\mathrm{M} / \mathrm{D})^{\mathrm{T}} \vee \mathrm{K}_{1}\right)$,
$\mathrm{N}[\mathrm{S} /(\mathrm{M} / \mathrm{C})] \subseteq \mathrm{N}(\mathrm{M} / \mathrm{D})$ and
$\mathrm{N}\left([\mathrm{S} /(\mathrm{M} / \mathrm{B})]^{\mathrm{T}} \vee \mathrm{K}_{2}\right) \subseteq \mathrm{N}\left((\mathrm{M} / \mathrm{A})^{\mathrm{T}} \vee \mathrm{K}_{2}\right)$ holds for K1v (M/A) according to the assumptions (by Theorem (1.6)) $(\mathrm{KVS})^{\dagger}$ is given by the form

By using
$\mathrm{K}_{2} v(\mathrm{M} / \mathrm{A})=\mathrm{K}_{2} v[\mathrm{~S} /(\mathrm{M} / \mathrm{C})]\left(\mathrm{K}_{2} v[\mathrm{~S} /(\mathrm{M} / \mathrm{C})]\right)^{\dagger}\left(\mathrm{K}_{2} v(\mathrm{M} / \mathrm{A})\right)^{\text {and }}$
$K_{1} \nu(M / D)=K_{1} v(M / C)\left(K_{1} \vee(M / C)\right)^{\dagger}\left(K_{1} \vee(M / D)\right)$, $(\mathrm{KVS})(\mathrm{KVS})^{\dagger}$ reduces to the form
$(\mathrm{KVS})(\mathrm{KVS})^{\dagger}=\left(\begin{array}{cc}\left(\mathrm{K}_{1} \mathrm{~V}(\mathrm{M} / \mathrm{C})\right)\left(\mathrm{K}_{1} \mathrm{~V}(\mathrm{M} / \mathrm{C})^{\dagger}\right) & 0 \\ 0 & \left(\mathrm{~K}_{2} \mathrm{~V}[\mathrm{~S} /(\mathrm{M} / \mathrm{C})]\right)\left(\mathrm{K}_{2} \mathrm{v}[\mathrm{S} /(\mathrm{M} / \mathrm{C})]^{\dagger}\right)\end{array}\right)$
(2.5)

Since the relation $N(M / B) \subseteq N(M / D)$,
$\mathrm{N}\left((\mathrm{M} / \mathrm{B})^{\mathrm{T}} \vee \mathrm{K}_{2}\right) \subseteq \mathrm{N}\left(\mathrm{A}^{\mathrm{T}} \vee \mathrm{K}_{2}\right)$,
$N[S /(M / B)] \subseteq N(M / A)$ and
$\mathrm{N}\left([\mathrm{S} /(\mathrm{M} / \mathrm{B})]^{\mathrm{T}} \nu \mathrm{K}_{1}\right) \subseteq \mathrm{N}\left((\mathrm{M} / \mathrm{D})^{\mathrm{T}} \nu \mathrm{K}_{1}\right)$ holds for
$\mathrm{K}_{1} \mathrm{~V}(\mathrm{M} / \mathrm{B})$ according to the assumptions (by Theorem
(1.6)) $(\mathrm{KVS})^{\dagger}$ is also given by the formula,
 (2.6)

Further using
$\left(\mathrm{K}_{1} \vee(\mathrm{M} / \mathrm{D})\right)=\left(\mathrm{K}_{1} \nu(\mathrm{M} / \mathrm{C})\right)\left(\mathrm{K}_{1} \vee(\mathrm{M} / \mathrm{C})\right)^{\dagger}\left(\mathrm{K}_{1} \mathrm{v}(\mathrm{M} / \mathrm{D})\right)$
that is, $(M / D)=(M / C)(M / C)^{\dagger}(M / D)$ and
$K_{2} \vee(M / A)=\left(K_{2} v(M / B)\right)\left(K_{2} \vee(M / B)\right)^{\dagger}\left(K_{2} \vee(M / A)\right)$ that is
$(\mathrm{M} / \mathrm{A})=(\mathrm{M} / \mathrm{B})(\mathrm{M} / \mathrm{B})^{\dagger}(\mathrm{M} / \mathrm{A})$ in [2.6]
$(\mathrm{KVS})(\mathrm{KVS})^{\dagger}$ reduces to the form,
$\left(\left(\mathrm{K}, \mathrm{V}[\mathrm{S} /(\mathrm{M} / \mathrm{B}))\left(\mathrm{K}, \mathrm{V}\lceil\mathrm{S} /(\mathrm{M} / \mathrm{B}))^{\dagger} \quad 0\right.\right.\right.$
135
International Journal of Current Research, Vol. 4
(2.7)

Comparing (2.5) and (2.7) we get,
$\left(\mathrm{K}_{1} \mathrm{~V}(\mathrm{M} / \mathrm{C})\right)\left(\mathrm{K}_{1} \mathrm{v}(\mathrm{M} / \mathrm{C})\right)^{\dagger}=\left(\mathrm{K}_{1} \mathrm{v}[\mathrm{S} /(\mathrm{M} / \mathrm{B})]\right)\left(\mathrm{K}_{1} \mathrm{v}[\mathrm{S} /(\mathrm{M} / \mathrm{B})]\right)^{\dagger}$
$\mathrm{K}_{1} v(\mathrm{M} / \mathrm{C})(\mathrm{M} / \mathrm{C})^{\dagger} \nu \mathrm{K}_{1}=\mathrm{K}_{1} v[\mathrm{~S} /(\mathrm{M} / \mathrm{B})][\mathrm{S} /(\mathrm{M} / \mathrm{B})]^{\dagger} \nu \mathrm{K}_{1}$
$(\mathrm{M} / \mathrm{C})(\mathrm{M} / \mathrm{C})^{\dagger}=[\mathrm{S} /(\mathrm{M} / \mathrm{B})][\mathrm{S} /(\mathrm{M} / \mathrm{B})]^{\dagger}$ Since
(M/C) and $[\mathrm{S} /(\mathrm{M} / \mathrm{B})]$ are con-s- $\mathrm{k}_{1}-\mathrm{EP}$.
$\left(\mathrm{K}_{1} v(\mathrm{M} / \mathrm{C})\right)^{\dagger}\left(\mathrm{K}_{1} v(\mathrm{M} / \mathrm{C})\right)=\left(\mathrm{K}_{1} v[\mathrm{~S} /(\mathrm{M} / \mathrm{B})]\right)^{\dagger}\left(\mathrm{K}_{1} v[\mathrm{~S} /(\mathrm{M} / \mathrm{B})]\right)$
$(\mathrm{M} / \mathrm{C})^{\dagger} \nu \mathrm{K}_{1} \mathrm{~K}_{1} \nu(\mathrm{M} / \mathrm{C})=[\mathrm{S} /(\mathrm{M} / \mathrm{B})]^{\dagger} \nu \mathrm{K}_{1} \mathrm{~K}_{1} \nu[\mathrm{~S} /(\mathrm{M} / \mathrm{B})]$
$(\mathrm{M} / \mathrm{C})^{\dagger}(\mathrm{M} / \mathrm{C})=[\mathrm{S} /(\mathrm{M} / \mathrm{B})]^{\dagger}[\mathrm{S} /(\mathrm{M} / \mathrm{B})]$
$\mathrm{N}(\mathrm{M} / \mathrm{C}) \subseteq \mathrm{N}[\mathrm{S} /(\mathrm{M} / \mathrm{B})]$
Similarly, by using the formula (2.5) and (2.7), we obtain the expressions for $(\mathrm{KVS})^{\dagger}(\mathrm{KVS})$. Comparing, these yields $(\mathrm{M} / \mathrm{B})^{\dagger}(\mathrm{M} / \mathrm{B})=[\mathrm{S} /(\mathrm{M} / \mathrm{C})]^{\dagger}[\mathrm{S} /(\mathrm{M} / \mathrm{C})]$ which implies $\mathrm{N}(\mathrm{M} / \mathrm{B})=\mathrm{N}[\mathrm{S} /(\mathrm{M} / \mathrm{C})]$. Thus [ii] holds, (ii) \Rightarrow (i)

$$
\mathrm{N}[\mathrm{~S} /(\mathrm{M} / \mathrm{C})] \subseteq \mathrm{N}(\mathrm{M} / \mathrm{D}) \quad \text { follows } \quad \text { directly }
$$

from

$$
\mathrm{N}[\mathrm{~S} /(\mathrm{M} / \mathrm{C})]=\mathrm{N}(\mathrm{M} / \mathrm{B}) \subseteq \mathrm{N}(\mathrm{M} / \mathrm{D})
$$

Similarly

$$
\mathrm{N}[\mathrm{~S} /(\mathrm{M} / \mathrm{A})] \subseteq \mathrm{N}(\mathrm{M} / \mathrm{A})
$$

follows from $N[S /(M / B)]=N(M / A) \subseteq N(M / A)$. Now (M/C) is
con-s- k_{1} - EP and $[\mathrm{S} /(\mathrm{M} / \mathrm{C})]$ is con-s- k_{2}-EP satisfying the relation
$\mathrm{N}(\mathrm{M} / \mathrm{C}) \subseteq \mathrm{N}(\mathrm{M} / \mathrm{A})$,
$\mathrm{N}\left((\mathrm{M} / \mathrm{C})^{\mathrm{T}} \nu \mathrm{K}_{1}\right) \subseteq \mathrm{N}\left((\mathrm{M} / \mathrm{D})^{\mathrm{T}} \nu \mathrm{K}_{1}\right)$,
$\mathrm{N}[\mathrm{S} /(\mathrm{M} / \mathrm{C})] \subseteq \mathrm{N}(\mathrm{M} / \mathrm{D}) \&$
$N\left([S /(M / C)]^{T} \nu K_{2}\right) \subseteq N\left((M / A)^{T} \nu K_{2}\right)$. Hence (by Theorem (2.4) [6]) S is con-s-k-EP, Thus [i] holds.

Theorem 2.8. Let S be a con-s- $\mathrm{k}-\mathrm{EP}_{\mathrm{r}}$ matrix of the form [2.2]
with $\mathrm{k}=\mathrm{k}_{1} \mathrm{k}_{2}$ where $\mathrm{K}=\left(\begin{array}{cc}\mathrm{K}_{1} & 0 \\ 0 & \mathrm{~K}_{2}\end{array}\right)$ and
$\mathrm{V}=\left(\begin{array}{ll}0 & v \\ v & 0\end{array}\right), \mathrm{N}(\mathrm{M} / \mathrm{C}) \subseteq \mathrm{N}(\mathrm{M} / \mathrm{A})$,
$\mathrm{N}(\mathrm{M} / \mathrm{B}) \subseteq \mathrm{N}(\mathrm{M} / \mathrm{D})$,
$\mathrm{N}[\mathrm{S} /(\mathrm{M} / \mathrm{C})] \subseteq \mathrm{N}(\mathrm{M} / \mathrm{D})$ and
$N[S /(M / B)] \subseteq N(M / A)$. Then the following holds.
(i) The secondary sub matrix (M/C) is con-s-k ${ }_{1}$-EP and secondary sub matrix (M / B) is con-s-k-2-EP.
(ii) The schur complement $[\mathrm{S} /(\mathrm{M} / \mathrm{C})]$ is con-s-$k_{2}-E P$ and $[S /(M / B)]$ is con-s- $k_{1}-E P$.
(iii) Each secondary pivot transform of S is con-s- $\mathrm{k}_{2}-$ EP_{r}

Proof. (i) and (ii) are consequences of Lemma 2.5. By Lemma 2.5. KVS satisfies
$\mathrm{N}\left(\mathrm{K}_{1} \nu(\mathrm{M} / \mathrm{C})\right) \subseteq \mathrm{N}\left(\mathrm{K}_{2} \nu(\mathrm{M} / \mathrm{A})\right)$ and
$\mathrm{N}\left((\mathrm{M} / \mathrm{C})^{\mathrm{T}} \vee \mathrm{K}_{1}\right) \subseteq \mathrm{N}\left((\mathrm{M} / \mathrm{D})^{\mathrm{T}} \vee \mathrm{K}_{1}\right)$ hence by
pivoting the block $K_{1} V C$, the secondary pivot transform \tilde{S} of S is of the form,
$\mathrm{KVS}=\left(\begin{array}{cc}\left(\mathrm{K}_{1} v(\mathrm{M} / \mathrm{C})\right)^{\dagger} & -\left(\mathrm{K}_{1} v(\mathrm{M} / \mathrm{C})\right)^{\dagger}\left(\mathrm{K}_{1} v(\mathrm{M} / \mathrm{D})\right) \\ \mathrm{K}_{2} v[\mathrm{~S} /(\mathrm{M} / \mathrm{A})]\left(\mathrm{K}_{1} v[\mathrm{~S} /(\mathrm{M} / \mathrm{C})]^{\dagger}\right) & \mathrm{K}_{2} v[\mathrm{~S} /(\mathrm{M} / \mathrm{C})]\end{array}\right)$
$\mathrm{KVS}=\left(\begin{array}{cc}(\mathrm{M} / \mathrm{C})^{\dagger} \vee \mathrm{K}_{1} & -(\mathrm{M} / \mathrm{C})^{\dagger}(\mathrm{M} / \mathrm{D}) \\ \mathrm{K}_{2}(\mathrm{M} / \mathrm{A})(\mathrm{M} / \mathrm{C})^{\dagger} \mathrm{K}_{1} & \mathrm{~K}_{2} v[\mathrm{~S} /(\mathrm{M} / \mathrm{C})]\end{array}\right)$ In KVS

$$
\begin{aligned}
& \mathrm{N}\left((\mathrm{M} / \mathrm{C})^{\dagger} v \mathrm{~K}_{1}\right) \subseteq \mathrm{N}\left(\mathrm{~K}_{2} v(\mathrm{M} / \mathrm{A})(\mathrm{M} / \mathrm{C})^{\dagger} v \mathrm{~K}_{1}\right)= \\
& \mathrm{N}\left((\mathrm{M} / \mathrm{A})(\mathrm{M} / \mathrm{C})^{\dagger} \nu \mathrm{K}_{1}\right), \\
& \mathrm{N}\left((\mathrm{M} / \mathrm{C})^{\dagger} \nu \mathrm{K}_{1}\right)^{\mathrm{T}} \subseteq \mathrm{~N}\left((\mathrm{M} / \mathrm{C})^{\dagger}(\mathrm{M} / \mathrm{D})\right)^{\mathrm{T}}
\end{aligned}
$$

Further,
$\mathrm{N}\left(\mathrm{KVS} /\left(\mathrm{K}_{1} \mathrm{v}(\mathrm{M} / \mathrm{C})\right)^{\dagger}\right)=\left(\mathrm{K}_{2} \mathrm{v}[\mathrm{S} /(\mathrm{M} / \mathrm{C})]\right)+\left(\mathrm{K}_{2} \mathrm{v}(\mathrm{M} / \mathrm{A})(\mathrm{M} / \mathrm{C})^{\dagger} \mathrm{VK}_{2}\right)$
$\left((\mathrm{M} / \mathrm{C})^{\dagger} \vee \mathrm{K}_{1}\right)\left((\mathrm{M} / \mathrm{C})^{\dagger}(\mathrm{M} / \mathrm{D})\right)$
$=\mathrm{K}_{1} \mathrm{v}[\mathrm{S} /(\mathrm{M} / \mathrm{C})]+\mathrm{K}_{2} \mathrm{~V}(\mathrm{M} / \mathrm{A})(\mathrm{M} / \mathrm{C})^{\dagger}(\mathrm{M} / \mathrm{C})(\mathrm{M} / \mathrm{C})^{\dagger}(\mathrm{M} / \mathrm{D})$
$=K_{2} \nu[S /(M / C)]+K_{2} \nu(M / A)(M / C)^{\dagger}(M / D)$
$=\mathrm{K}_{2} \mathrm{v}\left([\mathrm{S} /(\mathrm{M} / \mathrm{C})]+(\mathrm{M} / \mathrm{A})(\mathrm{M} / \mathrm{C})^{\dagger}(\mathrm{M} / \mathrm{D})\right)$
$=K_{2} \nu(M / D)$
$\Rightarrow\left(\mathrm{KVS} /\left(\mathrm{K}_{1} v(\mathrm{M} / \mathrm{C})\right)^{\dagger}\right)=\mathrm{K}_{2} \vee\left[\tilde{\mathrm{~S}} /(\mathrm{M} / \mathrm{C})^{\dagger}\right]=\mathrm{K}_{2} \vee(\mathrm{M} / \mathrm{D})$
By the assumption
$\mathrm{N}\left(\mathrm{K}_{2} \mathrm{~V}\left[\tilde{\mathrm{~S}} /(\mathrm{M} / \mathrm{C})^{\dagger}\right]\right)=\mathrm{N}\left(\mathrm{K}_{2} v(\mathrm{M} / \mathrm{B})\right)$ which
implies $N\left[\tilde{S} /(M / C)^{\dagger}\right]=N(M / B) \subseteq N(M / D)$.
From Lemma 2.5. (M/C) is con-s- k_{1}-EP and (M/B) is con-s-k_{2}-EP, Therefore $(\mathrm{M} / \mathrm{C})^{\dagger}$ is con-s- $\mathrm{k}_{1}-\mathrm{EP}\left[\tilde{\mathrm{S}} /(\mathrm{M} / \mathrm{C})^{\dagger}\right]$ is con-s-k $_$-FP. (Bv Theorem 2.11. [51) and
136
International Journal of Current Research, Vol.

Also $\mathrm{N}\left(\mathrm{K}_{2} \vee \tilde{\mathrm{~S}} /(\mathrm{M} / \mathrm{C})^{\dagger}\right)=\mathrm{N}\left(\mathrm{K}_{2} \mathrm{~V}(\mathrm{M} / \mathrm{B})\right)^{\mathrm{T}}$
$\mathrm{N}\left(\left[\tilde{\mathrm{S}} /(\mathrm{M} / \mathrm{C})^{\dagger}\right]^{\mathrm{T}} \vee \mathrm{K}_{2}\right)=\mathrm{N}\left((\mathrm{M} / \mathrm{B})^{\mathrm{T}} \nu \mathrm{K}_{2}\right) \subseteq \mathrm{N}\left((\mathrm{M} / \mathrm{A})^{\mathrm{T}} \vee \mathrm{K}_{2}\right)$

Now by applying Theorem (2.4), we are that \tilde{S} is con-s-k-EP. Now

$$
\mathrm{r}=\rho(\mathrm{S})=\rho(\mathrm{M} / \mathrm{C})+\rho[\mathrm{S} /(\mathrm{M} / \mathrm{C})]
$$

(Theorem 1.5.)

$$
=\rho(\mathrm{M} / \mathrm{C})^{\dagger}+\rho(\mathrm{M} / \mathrm{B})
$$

(Theorem 1.1. \& by Lemma 2.5.)

$$
\begin{aligned}
& =\rho(\mathrm{M} / \mathrm{C})^{\dagger}+\rho\left[\tilde{\mathrm{S}} /(\mathrm{M} / \mathrm{C})^{\dagger}\right] \\
& =\rho(\tilde{\mathrm{S}})
\end{aligned}
$$

(Theorem 1.5.)
Thus (\tilde{S}) is con-s-k-EP P_{r}. Similarly under the conditions given on S it can be transformed to its secondary Pivot transform by pivoting the block $\mathrm{K}_{1} \mathrm{~V}(\mathrm{M} / \mathrm{B})$ without changing the rand.

Remark 2.9. For $k(i)=I$, the identity transposition Theorem [2.8] reduces to the results for con-s-EP matrices. It $\mathrm{KV}=\mathrm{I}$ then Theorem 2.8 reduces to the (Theorem 1, of [7]).

Remark 2.10. As a special case when S is non singular, then conditions $\mathrm{N}(\mathrm{M} / \mathrm{C}) \subseteq \mathrm{N}(\mathrm{M} / \mathrm{A})$ and
$\mathrm{N}(\mathrm{M} / \mathrm{B}) \subseteq \mathrm{N}(\mathrm{M} / \mathrm{D}) \quad$ automatically hold and \quad by Theorem 1.4] $\mathrm{N}[\mathrm{S} /(\mathrm{M} / \mathrm{D})]$ and $\mathrm{N}[\mathrm{S} /(\mathrm{M} / \mathrm{B})]$ are non singular, further, $\quad \rho[\tilde{S}]=\rho(M / C)+\rho(M / B)$. Hence it follows that each secondary Pivot transform of S is that the non singular. However we note that the non singularity of $\tilde{\mathrm{S}}$ need not imply S is non singular.
Example 2.11. $\mathrm{A}=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right], \mathrm{B}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right], \mathrm{C}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$, $\mathrm{D}=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$
$M=\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right] \quad M=\left[\begin{array}{ll|ll}1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ \hline 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1\end{array}\right]$. Schur complement
of $(M / A)=\left(\begin{array}{cc}1 & -1 \\ 2 & 1\end{array}\right)$,
$(\mathrm{M} / \mathrm{B})=\left(\begin{array}{cc}1 & 2 \\ -1 & 1\end{array}\right),(\mathrm{M} / \mathrm{C})=\left(\begin{array}{cc}1 & 2 \\ -1 & 1\end{array}\right),(\mathrm{M} / \mathrm{D})=\left(\begin{array}{cc}1 & -1 \\ 2 & 1\end{array}\right)$.
$\mathrm{S}=\left[\begin{array}{l}(\mathrm{M} / \mathrm{A}) \mid(\mathrm{M} / \mathrm{B}) \\ \hline(\mathrm{M} / \mathrm{C}) \mid(\mathrm{M} / \mathrm{D})\end{array}\right] \quad, \quad \mathrm{S}=\left[\begin{array}{cc|cc}1 & -1 & 1 & 2 \\ 2 & 1 & -1 & 1 \\ \hline 1 & 2 & 1 & -1 \\ -1 & 1 & 2 & 1\end{array}\right], \quad \mathrm{K}=\left[\begin{array}{ll|ll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
$\mathrm{V}=\left[\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right], \quad \mathrm{KVS}=\left[\begin{array}{cc|cc}-1 & 1 & 2 & 1 \\ 1 & 2 & 1 & -1 \\ 2 & 1 & -1 & 1 \\ 1 & -1 & 1 & 2\end{array}\right], \mathrm{K}, \mathrm{V}(\mathrm{M} / \mathrm{C})=\left(\begin{array}{cc}-1 & 1 \\ 1 & 2\end{array}\right)$
$K_{1} \mathrm{~V}(\mathrm{M} / \mathrm{D})=\left[\mathrm{K}_{2} \mathrm{~V}(\mathrm{M} / \mathrm{A})\right]^{\mathrm{T}}=\left(\begin{array}{cc}2 & 1 \\ 1 & -1\end{array}\right)$,
$K_{2} V(M / B)=\left(\begin{array}{cc}-1 & 1 \\ 1 & 2\end{array}\right)$. Here $K_{1} V(M / C)$ and $K_{2} V(M / B)$ are
non singular and $[\mathrm{S} /(\mathrm{M} / \mathrm{C})]=\left[\begin{array}{ll}3 & 3 \\ 0 & 3\end{array}\right]$
$\mathrm{K}_{2} \mathrm{~V}[\mathrm{~S} /(\mathrm{M} / \mathrm{C})]=\left[\begin{array}{ll}0 & 3 \\ 3 & 3\end{array}\right] \quad$ is Con- EP_{2}. Therefore
[S/(M/C)]
is
Con-s-k ${ }_{2}-\mathrm{EP}_{2}$
$\rho(\mathrm{KVS})=\rho\left(\mathrm{K}_{1} \mathrm{~V}(\mathrm{M} / \mathrm{C})\right)+\rho\left(\mathrm{K}_{2} \mathrm{~V}[\mathrm{~S} /(\mathrm{M} / \mathrm{C})]\right)$.

That is $\rho(S)=\rho(M / C)+\rho[S /(M / C)]=3$. Since KVS is symmetric, KVS is Con- EP_{3} which implies S is Con-s-k$E P_{3}$. By (2.9).

REFERENCES

[1] Baskett, T.S. and Katz, I.J., "Theorems on products of EP_{r} matrices". Lin. Alg. Appl., 2 (1969), 87-103.
[2] Ben-Israel, A. and Grevile, T.N.E., Generalized Inverses: Theory and Applications, New York: Wiley and Sons (1974).
[3] Burns, F., Carlson, D., Haynesworth, E. and Markham, T.H., "Generalized inverse formulas using the Schur complement". SIAM.J. Appl. Math., 26 (1974), 254-259.
[4] Carlson, D.H., Haynesworth, E. and Markham, T.H.,"A generalization of the Schur complement by means of the Moor-Penrose inverse," SIAMJ. Appl. Math., 26(1974), 169-175.
[5] Krishnamoorthy, S., Gunasekaran, K. and Muthugobal, B.K.N., "Con-s-k-EP matrices", IJMSEA, Vol 5, No.1, Jan 2011.
[6] Krishnamoorthy, S. and Muthugobal, B.K.N., "Schur Complement of con-s-k-EP matrices", International Journal of Mathematics and Mathematical Science (communicated).
[7] Meenakshi, A.R., "Principal pivot transforms of an EP matrix". C.R. Math. Rep. Acad. Sci. Canada, 8 (1986), 121-126.
[8] Penrose, R., "On best approximate solutions of linear matrix equations". Proc. Cambridge Phil. Soc., 52 (1959) 17-19.
[9] Rao, C.R. and Mitra, S.K., Generalized Inverse of Matrices and its Applications. New York: Wiley and Sons (1971).

[^0]: *Corresponding author: bkn.math@gmail.com

