

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 4, Issue, 03, pp.132-136, March, 2012 INTERNATIONAL JOURNAL OF CURRENT RESEARCH

RESEARCH ARTICLE

SCHUR COMPLEMENTS PIVOTAL TRANSFORMATION ON CON-s-k-EP MATRICES

Krishnamoorthy, S* and Muthugobal, B.K.N.

Ramanujan Research Centre, Department of Mathematics, Govt. Arts College (Autonomous), Kumbakona-612001, Tamilnadu, India.

ARTICLE INFO	ABSTRACT
Article History: Received 25 th December, 2011 Received in revised form 30 th January, 2011 Accepted 13 th February, 2011 Published online 31 st March, 2012	Necessary and sufficient conditions are determined for a schur complement Pivotal Transformation in a con-s-k-EP matrix to be con-s-k-EP. Further it is shown that in a con-s-k-EP _r Matrix, every secondary sub matrix of rank 'r' is con-s-k-EP _r . Also discussed the question of expressing a matrix of rank r as a product of con-s-k-EP _r matrix. A necessary and sufficient condition for products of con-s-k-EPr Partitioned matrices to be con-s-k-EPr is given.
Key words:	- AMS classification: 15A09, 15A15, 15A57
Con-s-k-EP matrices, partitioned matrices, schur complements, pivotal	

INTRODUCTION

transformation matrices.

Throughout we shall deal with C_{nxn} the space of nxn complex matrices. Let C_n be the space of complex n-tuples. For $A\!\in\!$ C_{nxn} , let A^T A^* and A^{\dagger} denotes the transpose, conjugate transpose and Moore Penrose inverse of A respectively. A matrix A is called con-s-k-EP_r if $\rho(A) = r$ and $N(A) = N(A^{T}VK)$ or $R(A) = R(KVA^{T})$ where $\rho(A)$ denotes the rank of A, N(A) and R(A) denotes the null space and range space of A respectively. Throughout let 'k' be the fixed product of disjoint transposition in $S_n=1, 2, n$ and K be the associated permutation matrix. Let us define the function $\boldsymbol{k}(x) = (x_{\boldsymbol{k}(1)}, x_{\boldsymbol{k}(2)}, \dots, x_{\boldsymbol{k}(n)})$. A matrix A=(a_{ij}) \in C_{nxn} is s-k symmetric if $a_{ij} = a_{n-k(j)+1,n-k(i)+1}$ for i,j=1,2,...,n. A matrix $A \in C_{nxn}$ is said to be con-s-k-EP if it satisfies the condition Ax=0 \Leftrightarrow A^{S} k (x) = 0 or equivalently $N(A) = N(A^{T}VK)$. In addition to that A is con-s-k-EP \Leftrightarrow KVA is con-EP or AVK is con-EP and A is con-s-k-EP \Leftrightarrow A^{T} is con-s-k-EP. Moreover A is said to be con-s-k-EP_r if A is con-s-k-EP and of rank r. For further properties of con-sk-EP matrices one may refer [3]. In this paper we give necessary and sufficient conditions for a schur complement pivotal transformation in a con-s-k-EP matrix to be con-s-k-EP. Further it is shown that in a con-s-k- EP_r matrix, every secondary sub matrix of rank r is con-s-k-EPr. Also discussed the question of expressing a matrix of rank r as a product of con-s-k-EPr matrices. Necessary and sufficient conditions for

*Corresponding author: bkn.math@gmail.com

products of con-s-k-EP $_{\rm r}$ partitioned matrices to be con-s-k-EP $_{\rm r}$ are given. In this sequel, we need the following theorems.

Copy Right, IJCR, 2012, Academic Journals. All rights reserved.

Theorem 1.1[2]. For $A, B \in C_{nxn}$, the following hold:

(i)
$$\rho(AA^*) = \rho(A^*A) = \rho(A) = \rho(A^T)$$

 $= \rho(A^*) = \rho(\overline{A}) = \rho(A^{\dagger})$
(ii) $\rho(AB) = \rho(B) - \dim N((A) \cap N(B^*)^{\perp})$

Theorem 1.2[1]. Let $A, B \in C_{nxn}$, and $U \in C_{nxn}$ be any non singular matrix. Then,

(i)
$$R(A) = R(B) \Leftrightarrow R(UAU^*) = R(UBU^*)$$

(ii) $N(A) = N(B) \Leftrightarrow N(UAU^*) = N(UBU^*)$

Theorem 1.3 [9]. Let $A, B \in C_{nxn}$, Then

(i)
$$N(A) \subseteq N(B) \Leftrightarrow R(B^*) \subseteq R(A^*)$$

 $\Leftrightarrow B = BA^{-}A \text{ for all } A^{-} \in A\{1\}$

(ii)
$$N(A^*) \subseteq N(B^*) \Leftrightarrow R(B) \subseteq R(A)$$

$$\Leftrightarrow B = AA^{-}B \text{ for every } A^{-} \in A\{1\}$$

Definition 1.4[3]. Let M be an nxn matrix of the form $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$. A schur complement of A in M is $(M/A) = D - CA^{-}B$.

Theorem 1.5 (Theorem 1 [4]). Let $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$, Then $\rho(M) \ge \rho(A) + \rho(M/A)$ With equality if and only if $N(M/A) \subseteq N((I - AA^{\dagger})B)$ $N(M/A)^* \subseteq N((I - A^{\dagger}A)C^*)$ and $(I - AA^{\dagger})B(M/A)^{\dagger} \subset (I - A^{\dagger}A) = 0$ In particular, we have the equality if M satisfies $N(A) \subseteq N(C)$ and $N(A^*) \subseteq N(B^*)$. **Theorem 1.6(Theorem 1 [3] and [8]).** Let (A - B)

$$M = \begin{pmatrix} C & D \end{pmatrix}, \text{ Then}$$

$$M^{\dagger} = \begin{pmatrix} A^{\dagger} + A^{\dagger}B(M/A)^{\dagger}CA & -A^{\dagger}B(M/A)^{\dagger} \\ -(M/A)^{\dagger}CA^{\dagger} & (M/A)^{\dagger} \end{pmatrix}$$

$$\Leftrightarrow N(A) \subseteq N(C), N(A^{*}) \subseteq N(B^{*}),$$

$$N(M/A)^{*} \subseteq N(C^{*}) \text{ and } N(M/A) \subseteq N(B)$$

$$Also, M^{\dagger} = \begin{pmatrix} (M/D)^{\dagger} & -A^{\dagger}B(M/A)^{\dagger} \\ -D^{\dagger}C(M/D)^{\dagger} & (M/A)^{\dagger} \end{pmatrix}$$

$$\Leftrightarrow N(A) \subseteq N(C), N(A^{*}) \subseteq N(B^{*}),$$

$$N(M/D)^{*} \subseteq N(B^{*}) N(M/D) \subseteq N(C).$$
When, $\rho(M) = \rho(A)$ then $M = \begin{pmatrix} A & B \\ C & CA^{-}B \end{pmatrix}$ and

$$M = \begin{pmatrix} A^{*}PA^{*} & A^{*}PC^{*} \\ B^{*}PA^{*} & B^{*}PC^{*} \end{pmatrix}$$
where

$$P = (AA^{*} + BB^{*})^{-}A(A^{*}A + C^{*}C)^{-}$$

2. PIVOTAL TRANSFORMATION ON CON-S-K-EP MATRICES

In this section we have given necessary and sufficient conditions for a con-s-k-EP matrix to have its secondary sub matrices and their schur complement to be con-s-k-EP. This is a generalization of the result found in [7]. As an application it is shown that the property of a matrix being con-s-k-EP_r is persevered under the secondary pivot transformation. It is well known that Theorem (1.2) [7], the class of con-EP matrices is invariant under secondary rearrangement. By a secondary rearrangement of a sequence matrix M, we mean a matrix $P^T MP$

Where P is a permutation matrix $\begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}$. By a secondary rearrangement of a square matrix M, we mean a matrix P^TVMP. Similarly the secondary k rearrangement of a square matrix M we mean a matrix P^TKVMP. Let M be a matrix of the form $M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$ (2.1) and let S be a matrix of the form $S = \begin{pmatrix} (M/A) & (M/B) \\ (M/C) & (M/D) \end{pmatrix}$ (2.2) $K = \begin{pmatrix} k_1 & 0 \\ 0 & k_2 \end{pmatrix}$ and $V = \begin{pmatrix} 0 & v \\ v & 0 \end{pmatrix}$.Now, $KVS = \begin{bmatrix} K_1 V(M/C) & K_1 V(M/D) \\ K_2 V(M/A) & K_2 V(M/B) \end{bmatrix}$ Then, $P^{T}(KVS)P = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix} \begin{bmatrix} K_1 V(M/C) & K_1 V(M/D) \\ K_2 V(M/A) & K_2 V(M/B) \end{bmatrix} \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}$ $= \begin{bmatrix} K_2 V(M/A) & K_2 V(M/B) \\ K_1 V(M/C) & K_1 V(M/C) \end{bmatrix} \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}$ $= \begin{bmatrix} K_2 V(M/B) & K_2 V(M/A) \\ K_1 V(M/D) & K_1 V(M/C) \end{bmatrix}$

 $\begin{bmatrix} K_1 V(M/D) & K_1 V(M/C) \end{bmatrix}$ Let us consider a system of linear equation SZ = t where S is of the form [2.2] satisfy $N(M/C) \subseteq N(M/A)$ and $N(M/C)^T \subseteq N(M/D)^T$. If Z and t are partitioned conformably as $Z = \begin{bmatrix} x \\ y \end{bmatrix}$ and $t = \begin{bmatrix} u \\ w \end{bmatrix}$ then the system becomes $\begin{bmatrix} (M/A) & (M/B) \\ (M/C) & (M/D) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} u \\ w \end{bmatrix}$ $\Rightarrow (M/A) x + (M/B) y = u$ (M/C) x + (M/D) y = wSince S satisfies $N(M/C) \subseteq N(M/A)$ and $N(M/C)^T \subseteq N(M/D)^T$. Using $(M/A) = (M/A)(M/C)^-(M/C)$ and $(M/D) = (M/C)^-(M/C)(M/D)$ (Theorem (1.3)) we can solve x and w as, $x = (M/C)^{\dagger} u - (M/C)^{\dagger} (M/D) y$;

$$w = (M / A)(M / C)' u + (M / B) - (M / A)(M / C)' (M / D) y.$$

Thus a matrix S of the form (2.2), that satisfies $N(M/C) \subseteq N(M/A)$ and $N(M/C)^T \subseteq N(M/D)^T$ can be transformed into the matrix

$$\tilde{\mathbf{S}} = \begin{bmatrix} (M/C)^{\dagger} & -(M/C)^{\dagger}(M/D) \\ (M/A)(M/C)^{\dagger} & [S/(M/D)] \end{bmatrix}$$
(2.3)

 \tilde{S} is called a secondary pivot transform of S. The operation that transforms $S \rightarrow S$ is called secondary pivot. Lemma 2.1. Let S be a matrix of the form (2.2) with $N(M/C) \subseteq N(M/A)$ and $N(M/B) \subseteq N(M/D)$. Then the following are equivalent. S is con-s-k-EP with $k = k_1 k_2$ Where (i) $\begin{bmatrix} 0 & v \end{bmatrix}$ ГК 0]

$$\mathbf{K} = \begin{bmatrix} \mathbf{M}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{K}_2 \end{bmatrix}, \quad \mathbf{V} = \begin{bmatrix} \mathbf{0} & \mathbf{1} \\ \mathbf{V} & \mathbf{0} \end{bmatrix},$$
$$\mathbf{N} \begin{bmatrix} \mathbf{S}/(\mathbf{M}/\mathbf{C}) \end{bmatrix} \subseteq \mathbf{N}(\mathbf{M}/\mathbf{D}) \text{ and}$$
$$\mathbf{N} \begin{bmatrix} \mathbf{S}/(\mathbf{M}/\mathbf{B}) \end{bmatrix} \subseteq \mathbf{N}(\mathbf{M}/\mathbf{A})$$

(M/C) and [S/(M/D)] are con-s-k₁-EP, (M/B)(ii) and [S/(M/C)] are con-s-k₂-EP.

Further

$$N(M/C) = N[S/(M/B)] \subseteq N((M/D)^{T} VK_{1})$$

and

$$N(M/B) = N[S/(M/C)] \subseteq N((M/A)^{T}VK_{2}).$$

Proof. Since S is con-s-k-EP with k = k₁ k₂ where

$$\mathbf{K} = \begin{bmatrix} \mathbf{K}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{K}_2 \end{bmatrix}, \ \mathbf{V} = \begin{bmatrix} \mathbf{0} & \mathbf{V} \\ \mathbf{V} & \mathbf{0} \end{bmatrix},$$

 $N(M/C) \subseteq N(M/A)$ and $N[S/(M/C)] \subseteq N(M/D)$ (by Theorem 2.5 [5]) (M/C) is con-s-k₁-EP $\left[S/(M/C) \right]$ is con-s-k₂-EP. $\mathbf{N}(\mathbf{M} \mid \mathbf{C}) = \mathbf{N}((\mathbf{M} \mid \mathbf{D})^{\mathrm{T}} \mathbf{M} \mathbf{C})$

$$N(M/C) = N((M/D)^{T}VK_{1}) \text{ and }$$

$$N\left(\left[S/(M/C)\right]^{T}VK_{2}\right)\subseteq N\left((M/A)^{T}VK_{2}\right).$$

Since (M/C) is con-s-k₁-EP,

 $N((M/C)^T V K_2) = N(M/C)$ [by definition of con-s-k-EP matrix]. Therefore $N((M/C)^{T}VK_{2}) \subseteq N((M/D)^{T}VK_{2})$. Since S is con-

s-k-EP, KVS is con-EP implies the secondary rearrangement $P^{T}KVSP = \begin{bmatrix} K_{2}V(M/B) & K_{2}V(M/A) \\ K_{1}V(M/D) & K_{1}V(M/C) \end{bmatrix}$ is also con-EP.

Further $N(K_2V(M/B)) \subseteq N(K_1V(M/D))$ and

 $N(K_1V[S/(M/B)]) \subseteq N(K_2V(M/A))$ hold. Hence by (Theorem (2.5) [6]) $K_2 V(M/B)$ is con-EP.

 $K_1 V[S/(M/B)]$ is con-EP,

$$N(K_2 V(M/B))^T \subseteq N(K_2 V(M/A))^T$$
 and

 $N(K_1V[S/(M/B)])^{T} \subseteq N(K_2V(M/D))^{T}$. Thus we have (M/B) is con-s-k_2-EP, $\left[S/\left(M/B\right)\right]$ is con-s-k_1-EP $N((M/R)^T VK) \subset N((M/A)^T VK_a)$ ar

$$N((M/B)^{T}VK_{2}) \subseteq N((M/A)^{T}VK_{2}) an$$
$$N[S/(M/B)] \subseteq N((M/D)^{T}VK_{1}).$$

Since (M/B) is con-s-k₂-EP. By definition $N((M/B)^T V K_2) = N(M/B).$ Thus $N(M/B) \subseteq N((M/A)^T V K_2)$. Since the relations $N(M/C) \subseteq N(M/A),$ $N((M/C)^{T}VK_{1}) \subseteq N((M/D)^{T}VK_{1}),$ $N[S/(M/C)] \subseteq N(M/D)$ and $N([S/(M/B)]^T VK_2) \subseteq N((M/A)^T VK_2)$ holds for K1v (M/A) according to the assumptions (by Theorem (1.6)) $(KVS)^{\dagger}$ is given by the form

 $(KVS)^{T} = \begin{bmatrix} (K,V(MC))^{T} + (K,V(MC))^{T} (K,V(MD)) (K,V(S'(M/C)]^{T}) (K,V(MA)) (K,V(MC))^{T} & -(K,V(MC))^{T} (K,V(MD)) (K,V(S(M/C)]^{T}) \\ -(K,V[S(M/C)]^{T}) (K,V(MA)) (K,V(MC))^{T} & (K,V[S(M/C)]^{T} \end{bmatrix}$

By using

 $K_2 \mathbf{v}(M/A) = K_2 \mathbf{v} [S/(M/C)] (K_2 \mathbf{v} [S/(M/C)])^{\dagger} (K_2 \mathbf{v} (M/A)) and$

 $K_1 \mathcal{V}(M/D) = K_1 \mathcal{V}(M/C) (K_1 \mathcal{V}(M/C))^{\dagger} (K_1 \mathcal{V}(M/D)),$ $(KVS)(KVS)^{\dagger}$ reduces to the form $(\text{KVS})(\text{KVS})^{\dagger} = \begin{pmatrix} (\text{K}_{1} \mathbf{V}(\text{M/C}))(\text{K}_{1} \mathbf{V}(\text{M/C})^{\dagger}) & 0\\ 0 & (\text{K}_{2} \mathbf{V}[\text{S}/(\text{M/C})])(\text{K}_{2} \mathbf{V}[\text{S}/(\text{M/C})]^{\dagger}) \end{pmatrix}$ Since the relation $N(M/B) \subseteq N(M/D)$, $N((M/B)^{T}VK_{2}) \subseteq N(A^{T}VK_{2}),$ $N[S/(M/B)] \subseteq N(M/A)$ and

 $N([S/(M/B)]^T VK_1) \subseteq N((M/D)^T VK_1)$ holds for

 $K_1 V(M/B)$ according to the assumptions (by Theorem

(1.6)) $(KVS)^{\dagger}$ is also given by the formula,

$$\left(KVS \right)^{\dagger} = \begin{bmatrix} K_{i} V \left[S/(M/C) \right]^{i} & -(K_{i} V(M/C)) \left(K_{i} V(M/D) \right) \left(K_{2} v \left[S/(M/C) \right] \right)^{\dagger} \\ - \left(K_{2} v (M/B) \right) \left(K_{i} V(M/A) \right) \left(K_{i} v \left[S/(M/C) \right] \right)^{i} & \left(K_{2} v \left[S/(M/C) \right] \right)^{i} \end{bmatrix}$$

(2.6)Further using

 $(K_1 \nu(M/D)) = (K_1 \nu(M/C))(K_1 \nu(M/C))^{\dagger}(K_1 \nu(M/D))$ that is, $(M/D) = (M/C)(M/C)^{\dagger}(M/D)$ and $\mathbf{K}_{2}\mathbf{V}(\mathbf{M}/\mathbf{A}) = (\mathbf{K}_{2}\mathbf{V}(\mathbf{M}/\mathbf{B}))(\mathbf{K}_{2}\mathbf{V}(\mathbf{M}/\mathbf{B}))^{\dagger}(\mathbf{K}_{2}\mathbf{V}(\mathbf{M}/\mathbf{A}))$ that is $(M/A) = (M/B)(M/B)^{\dagger}(M/A)$ in [2.6] $(KVS)(KVS)^{\dagger}$ reduces to the form, $\int \left(\left(K_{1} \mathcal{V}[S/(M/B)] \right) \left(K_{1} \mathcal{V}[S/(M/B)] \right)^{\dagger} \right)$ 0 135 International Journal of Current Research, Vol. 4

(2.7)

Comparing (2.5) and (2.7) we get,

 $(K_1 \nu(M/C))(K_1 \nu(M/C))^{\dagger} = (K_1 \nu \lceil S/(M/B) \rceil)(K_1 \nu \lceil S/(M/B) \rceil)^{\dagger}$

 $K_{1}v(M/C)(M/C)^{\dagger}vK_{1} = K_{1}v[S/(M/B)][S/(M/B)]^{\dagger}vK_{1}$ $(M/C)(M/C)^{\dagger} = [S/(M/B)][S/(M/B)]^{\dagger} Since$ $(M/C) and [S/(M/B)] are con-s-k_{1}-EP.$ $(K_{1}v(M/C))^{\dagger}(K_{1}v(M/C)) = (K_{1}v[S/(M/B)])^{\dagger}(K_{1}v[S/(M/B)])$ $(M/C)^{\dagger}vK_{1}K_{1}v(M/C) = [S/(M/B)]^{\dagger}vK_{1}K_{1}v[S/(M/B)]$ $(M/C)^{\dagger}(M/C) = [S/(M/B)]^{\dagger}[S/(M/B)]$ $N(M/C) \subseteq N[S/(M/B)]$

Similarly, by using the formula (2.5) and (2.7), we obtain the expressions for $(KVS)^{\dagger}(KVS)$. Comparing, these yields $(M/B)^{\dagger}(M/B) = [S/(M/C)]^{\dagger} [S/(M/C)]$ which implies N(M/B) = N[S/(M/C)]. Thus [ii] holds, (ii) \Rightarrow (i)

 $N \Big[S / \big(M / C \big) \Big] { \subseteq } N \big(M / D \big) \quad \mbox{follows} \quad \mbox{directly} \label{eq:nonlinear}$ from

$$N[S/(M/C)] = N(M/B) \subseteq N(M/D).$$

Similarly

$$N[S/(M/A)] \subseteq N(M/A)$$

follows from $N[S/(M/B)] = N(M/A) \subseteq N(M/A)$. Now (M/C) is

con-s-k₁-EP and $\left\lceil S/(M/C) \right\rceil$ is con-s-k₂-EP satisfying the relation

$$N(M/C) \subseteq N(M/A),$$

$$N((M/C)^{T} VK_{1}) \subseteq N((M/D)^{T} VK_{1}),$$

$$N[S/(M/C)] \subseteq N(M/D) \&$$

$$N([S/(M/C)]^{T} VK_{2}) \subseteq N((M/A)^{T} VK_{2}). \text{ Hence}$$
(by Theorem (2.4) [6]) S is con-s-k-EP, Thus [i] holds.

Theorem 2.8. Let S be a con-s-k-EP_r matrix of the form [2.2]

with
$$\mathbf{k} = \mathbf{k}_1 \, \mathbf{k}_2$$
 where $\mathbf{K} = \begin{pmatrix} \mathbf{K}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{K}_2 \end{pmatrix}$ and
 $\mathbf{V} = \begin{pmatrix} \mathbf{0} & \mathbf{V} \\ \mathbf{V} & \mathbf{0} \end{pmatrix}, \, \mathbf{N} (\mathbf{M}/\mathbf{C}) \subseteq \mathbf{N} (\mathbf{M}/\mathbf{A}),$
 $\mathbf{N} (\mathbf{M}/\mathbf{B}) \subseteq \mathbf{N} (\mathbf{M}/\mathbf{D}),$
 $\mathbf{N} [\mathbf{S}/(\mathbf{M}/\mathbf{C})] \subset \mathbf{N} (\mathbf{M}/\mathbf{D})$ and

 $N[S/(M/C)] \subseteq N(M/D)$ and

 $N[S/(M/B)] \subseteq N(M/A)$. Then the following holds.

- The secondary sub matrix (M/C) is con-s-k₁-EP and secondary sub matrix (M/B) is con-s-k-₂-EP.
- (ii) The schur complement $\left[S/(M/C)\right]$ is con-sk₂-EP and $\left[S/(M/B)\right]$ is con-s-k₁-EP.

(iii) Each secondary pivot transform of S is con-s- k_2 - EP_r

Proof. (i) and (ii) are consequences of Lemma 2.5. By Lemma 2.5. KVS satisfies

$$N(K_{1}\nu(M/C)) \subseteq N(K_{2}\nu(M/A)) \text{ and} N((M/C)^{T}\nu K_{1}) \subseteq N((M/D)^{T}\nu K_{1}) \text{ hence by}$$

pivoting the block K_1VC , the secondary pivot transform S of S is of the form,

$$\overline{\mathbf{K}}\mathbf{V}\mathbf{S} = \begin{pmatrix} \left(\mathbf{K}_{1}\mathbf{V}(\mathbf{M}/\mathbf{C})\right)^{\dagger} & -\left(\mathbf{K}_{1}\mathbf{V}(\mathbf{M}/\mathbf{C})\right)^{\dagger}\left(\mathbf{K}_{1}\mathbf{V}(\mathbf{M}/\mathbf{D})\right) \\ \mathbf{K}_{2}\mathbf{V}\left[\mathbf{S}/(\mathbf{M}/\mathbf{A})\right] \left(\mathbf{K}_{1}\mathbf{V}\left[\mathbf{S}/(\mathbf{M}/\mathbf{C})\right]^{\dagger}\right) & \mathbf{K}_{2}\mathbf{V}\left[\mathbf{S}/(\mathbf{M}/\mathbf{C})\right] \end{pmatrix}$$

$$\mathbf{K}\mathbf{V}\mathbf{S} = \begin{pmatrix} (\mathbf{M}/\mathbf{C})^{\dagger}\mathbf{V}\mathbf{K}_{1} & -(\mathbf{M}/\mathbf{C})^{\dagger}(\mathbf{M}/\mathbf{D}) \\ \mathbf{K}_{2}(\mathbf{M}/\mathbf{A})(\mathbf{M}/\mathbf{C})^{\dagger}\mathbf{K}_{1} & \mathbf{K}_{2}\mathbf{V}[\mathbf{S}/(\mathbf{M}/\mathbf{C})] \end{pmatrix}$$

In KVS

$$\begin{split} & N\left(\left(M/C\right)^{\dagger}\nu K_{1}\right) \subseteq N\left(K_{2}\nu\left(M/A\right)\left(M/C\right)^{\dagger}\nu K_{1}\right) = \\ & N\left(\left(M/A\right)\left(M/C\right)^{\dagger}\nu K_{1}\right), \\ & N\left(\left(M/C\right)^{\dagger}\nu K_{1}\right)^{T} \subseteq N\left(\left(M/C\right)^{\dagger}\left(M/D\right)\right)^{T} \end{split}$$

Further,

 $N\left(\overline{\mathbb{K}VS}/(K_{1}V(M/C))^{\dagger}\right) = \left(K_{2}V[S/(M/C)]\right) + \left(K_{2}V(M/A)(M/C)^{\dagger}VK_{2}\right)$

$$\left(\left(M/C\right)^{\dagger} \nu K_{1}\right)\left(\left(M/C\right)^{\dagger} \left(M/D\right)\right)$$

= $K_{1}\nu[S/(M/C)] + K_{2}\nu(M/A)(M/C)^{\dagger}(M/C)(M/C)^{\dagger}(M/D)$

$$= K_2 \nu [S/(M/C)] + K_2 \nu (M/A) (M/C)^{\dagger} (M/D)$$

$$= K_2 \nu ([S/(M/C)] + (M/A) (M/C)^{\dagger} (M/D))$$

$$= K_2 \nu (M/D)$$

$$\Rightarrow (KVS/(K_1 \nu (M/C))^{\dagger}) = K_2 \nu [\tilde{S}/(M/C)^{\dagger}] = K_2 \nu (M/D)$$

By the assumption $N\left(K_{2}V\left[\tilde{S}/(M/C)^{\dagger}\right]\right) = N\left(K_{2}V(M/B)\right) \text{ which}$ implies $N\left[\tilde{S}/(M/C)^{\dagger}\right] = N\left(M/B\right) \subseteq N\left(M/D\right)$. From Lemma 2.5. (M/C) is con-s-k₁-EP and (M/B) is con-s-k₂-EP, Therefore $\left(M/C\right)^{\dagger}$ is con-s-k₁-EP $\left[\tilde{S}/(M/C)^{\dagger}\right]$ is con-s-k₂-EP (By Theorem 2.11 [51) and *136 International Journal of Current Research, Vol. 4* $\underbrace{(M/C)^{\dagger}}_{V} = N\left(K_{2}V\left(M/B\right)\right)^{T}$ Also $N\left(K_{2}V\tilde{S}/(M/C)^{\dagger}\right) = N\left(K_{2}V\left(M/B\right)\right)^{T}$ $N\left(\left[\tilde{S}/(M/C)^{\dagger}\right]^{T}VK_{2}\right) = N\left((M/B)^{T}VK_{2}\right) \subseteq N\left((M/A)^{T}VK_{2}\right)$ Now by applying Theorem (2.4), we are that $\,S\,$ is con-s-k-EP. Now

$$r = \rho(S) = \rho(M/C) + \rho[S/(M/C)]$$
(Theorem 1.5.)

$$= \rho(M/C)^{\dagger} + \rho(M/B)$$
(Theorem 1.1. & by Lemma 2.5.)

$$= \rho(M/C)^{\dagger} + \rho[\tilde{S}/(M/C)^{\dagger}]$$

$$= \rho(\tilde{S})$$
(Theorem 1.5.)

Thus (\tilde{S}) is con-s-k-EP_r. Similarly under the conditions given on S it can be transformed to its secondary Pivot transform by pivoting the block $K_1 V(M/B)$ without changing the rand.

Remark 2.9. For k(i) = I, the identity transposition Theorem [2.8] reduces to the results for con-s-EP matrices. It KV=I then Theorem 2.8 reduces to the (Theorem 1, of [7]).

Remark 2.10. As a special case when S is non singular, then conditions $N(M/C) \subseteq N(M/A)$ and

 $N(M/B) \subseteq N(M/D)$ automatically hold and [by Theorem 1.4] N[S/(M/D)] and N[S/(M/B)] are non singular, further, $\rho[\tilde{S}] = \rho(M/C) + \rho(M/B)$. Hence it follows that each secondary Pivot transform of S is

that the non singular. However we note that the non $\tilde{\mathbf{c}}$

singularity of \hat{S} need not imply S is non singular.

Example 2.11. A =
$$\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$
, B = $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, C = $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$,
D = $\begin{bmatrix} 1 & 0 \\ 0 \end{bmatrix}$

$$M = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \quad M = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}.$$
 Schur complement

of
$$(M/A) = \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix}$$
,

|1 1|

$$(M/B) = \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix}, (M/C) = \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix}, (M/D) = \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix}.$$

$$S = \begin{bmatrix} (M/A) & (M/B) \\ (M/C) & (M/D) \end{bmatrix} , \qquad S = \begin{bmatrix} 1 & -1 & 1 & 2 \\ 2 & 1 & -1 & 1 \\ 1 & 2 & 1 & -1 \\ -1 & 1 & 2 & 1 \end{bmatrix}, \qquad K = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$V = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}, \qquad KVS = \begin{bmatrix} -1 & 1 & 2 & 1 \\ 1 & 2 & 1 & -1 \\ 2 & 1 & -1 & 1 \\ 1 & -1 & 1 & 2 \end{bmatrix}, K_1V(M/C) = \begin{pmatrix} -1 & 1 \\ 1 & 2 \end{pmatrix}$$

$$K_1V(M/D) = \begin{bmatrix} K_2V(M/A) \end{bmatrix}^T = \begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix},$$

$$K_{2}V(M/B) = \begin{pmatrix} -1 & 1 \\ 1 & 2 \end{pmatrix}$$
. Here $K_{1}V(M/C)$ and $K_{2}V(M/B)$ are
non singular and $\begin{bmatrix} S/(M/C) \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ 0 & 3 \end{bmatrix}$.
$$K_{2}V\begin{bmatrix} S/(M/C) \end{bmatrix} = \begin{bmatrix} 0 & 3 \\ 3 & 3 \end{bmatrix}$$
 is Con-EP₂. Therefore
 $\begin{bmatrix} S/(M/C) \end{bmatrix}$ is Con-s-k₂-EP₂ .
 $\rho(KVS) = \rho(K_{1}V(M/C)) + \rho(K_{2}V\begin{bmatrix} S/(M/C) \end{bmatrix})$.
That is $\rho(S) = \rho(M/C) + \rho[S/(M/C)] = 3$. Since KVS
is symmetric, KVS is Con-EP₃ which implies S is Con-s-k-

REFERENCES

EP₃. By (2.9).

- Baskett, T.S. and Katz, I.J., "Theorems on products of EP_r matrices". *Lin. Alg. Appl.*, 2 (1969), 87-103.
- [2] Ben-Israel, A. and Grevile, T.N.E., Generalized Inverses: Theory and Applications, *New York: Wiley and Sons* (1974).
- [3] Burns, F., Carlson, D., Haynesworth, E. and Markham, T.H., "Generalized inverse formulas using the Schur complement". *SIAM.J. Appl. Math.*, 26 (1974), 254-259.
- [4] Carlson, D.H., Haynesworth, E. and Markham, T.H., "A generalization of the Schur complement by means of the Moor-Penrose inverse," *SIAMJ. Appl. Math.*, 26(1974), 169-175.
- [5] Krishnamoorthy, S., Gunasekaran, K. and Muthugobal, B.K.N., "Con-s-k-EP matrices", *IJMSEA, Vol 5, No.1*, Jan 2011.
- [6] Krishnamoorthy, S. and Muthugobal, B.K.N., "Schur Complement of con-s-k-EP matrices", International Journal of Mathematics and Mathematical Science (communicated).
 [7] Maenakshi A.P., "Principal piyot transforms of an EP
- [7] Meenakshi, A.R., "Principal pivot transforms of an EP matrix". C.R. Math. Rep. Acad. Sci. Canada, 8 (1986), 121-126.
- [8] Penrose, R., "On best approximate solutions of linear matrix equations". Proc. Cambridge Phil. Soc., 52 (1959) 17-19.
- [9] Rao, C.R. and Mitra, S.K., Generalized Inverse of Matrices and its Applications. *New York: Wiley and Sons* (1971).