



International Journal of Current Research Vol. 8, Issue, 08, pp.36939-36942, August, 2016

## RESEARCH ARTICLE

## GEOMETRIC MEAN LABELING OF SUBDIVISION ON TRIANGULAR SNAKES

\*1Somasundaram, S., 2Sandhya, S.S. and 3Viji, S. P.

<sup>1</sup>Department of Mathematics, M. S. University, Tirunelveli – 627012 <sup>2</sup>Department of Mathematics, Sree Ayyappa College for Women, Chunkankadai - 629003 <sup>3</sup>Department of Mathematics, K.N.S.K. College of Engineering, Therekalputhoor – 629006

#### **ARTICLE INFO**

#### Article History:

Received 16<sup>th</sup> May, 2016 Received in revised form 10<sup>th</sup> June, 2016 Accepted 27<sup>th</sup> July, 2016 Published online 31<sup>st</sup> August, 2016

#### Key words:

Graph, Geometric mean graph, Triangular Snake, Alternate Triangular Snakes.

# ABSTRACT

A Graph G = (V, E) with p vertices and q edges is said to be a Geometric mean graph if it is possible to label the vertices  $x \in V$  with distinct labels f(x) from  $1,2,\ldots,q+1$  in such way that when each edge e=uv is labeled with  $f(e=uv)=\left|\sqrt{f(u)f(v)}\right|$  or  $\left|\sqrt{f(u)f(v)}\right|$ , then the resulting edge labels are distinct. In this case, f is called Geometric mean labeling of G. In this paper, we investigate the Geometric mean labeling behaviour of subdivision on Triangular Snakes.

Copyright©2016, Somasundaram et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Somasundaram, S., Sandhya, S.S. and Viji, S. P. 2016. "Geometric mean labeling of subdivision on triangular snakes", *International Journal of Current Research*, 8, (08), 36939-36942.

# **INTRODUCTION**

All graphs considered here will be finite undirected and simple. Let V(G) and E(G) will denote the vertex set and edge set of a graph G. The cardinality of the vertex set of a graph G is denoted by G and the cardinality of its edge set is denoted by G. For all detailed survey of graph labeling we refer to Gallian [1]. For all other standard terminology and notations we follow Harary [2]. The concept of Mean labeling on Subdivision was introduced in [3] and Harmonic mean labeling was introduced in [4]. The concept of Geometric mean labeling was introduced and the basic results proved in [5]. We investigate the Geometric mean labeling behaviour of G for some standard graphs G. The definitions and other informations which are useful for the present investigation are given below.

**Definition 1.1:** A graph G=(V,E) with p vertices and q edges is said to be a Geometric mean if it is possible to label the vertices  $x \in V$  with distinct labels f(x) from  $1,2,\ldots,q+1$  in such a way that when each edge e=uv is labeled with  $f(e=uv)=\left[\sqrt{f(u)f(v)}\right]$  (or)  $\left|\sqrt{f(u)f(v)}\right|$ , then the resulting edge labels are distinct. In this case f is called Geometric mean labeling of G.

\*Corresponding author: Somasundaram, S., Department of Mathematics, M. S. University, Tirunelveli – 627012 **Definition 1.2:** If e=uv is an edge of G and w is a vertex not in G then e is said to be subdivided when it is replaced by the edges uw and wv. The graph obtained by subdividing each edge of graph G is called the subdivision graph of G is called the the subdivision graph of G and is denoted by S(G).

**Definition 1.3:** A Triangular Snake  $T_n$  is obtained from a path  $v_1v_2....v_n$  by joining  $v_i$  and  $v_{i+1}$  to a new vertex  $w_i$  for  $1 \le i \le n-1$ . That is, every edge of a path is replaced by a Triangle  $C_3$ .

**Definition 1.4:** An Alternate Triangular Snakes  $A(T_n)$  is obtained from a path  $u_1u_2....u_n$  by joining  $u_i$  and  $u_{i+1}$  (alternatively) to a new vertex  $v_i$ .

That is, every alternate edge of a path is replaced by  $C_3$ .

**Theorem 1.5**[5]: Any path is a Geometric mean graph.

**Theorem 1.6[5]:** Any cycle is a Geometric mean graph.

#### **Main Results**

**Theorem: 2.1** Subdivision of Triangular Snake is a Geometric mean graph.

#### **Proof:**

Let  $T_n$  be a Triangular snake and  $u_1 u_2...u_n$  be path of  $T_n$ . Let  $S(T_n) = T_N$  be a graph obtained by subdivide the edges of  $T_n$ .

Here we consider the following cases

#### Case (i)

Let  $T_N$  be a graph which is obtained by subdividing each edge of  $P_-$ 

Let  $t_1$ ,  $t_2$ ..... $t_{n-1}$  be the vertices which subdivide the edges  $u_i$  and  $u_{i+1}$ .

Define a function f:  $V(T_N) \rightarrow \{1,2,\dots,q+1\}$  by

 $f(u_i) = 4i-3, 1 \le i \le n$ 

 $f(t_i) = 4i-2, 1 \le i \le n-1$ 

 $f(v_i) = 4i.1 \le i \le n-1$ 

Edges are labeled with

 $f(u_i t_i) = 4i-3, 1 \le i \le n-1$ 

 $f(u_i v_i) = 4i-2, 1 \le i \le n-1.$ 

 $f(t_iu_{i+1}) = 4i-1, 1 \le i \le n-1$ 

 $f(v_i u_{i+1}) = 4i, 1 \le i \le n-1$ 

The labeling pattern is shown in the following figure.

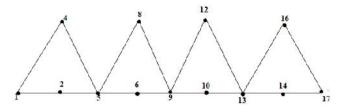


Figure 1.

From the above labeling pattern, we get the edge labels are all distinct. Thus f provides a Geometric mean labeling for  $T_N$ 

**Case (ii):** Let  $T_N$  be a graph obtained by subdividing the edges  $u_i v_i$  and  $u_{i+1} v_i$ .

Let  $x_i$  and  $y_i$  be the new vertices which subdivide the edges  $u_i v_i$  and  $v_i u_{i+1}$ ,  $1 \le i \le n-1$ 

Define a function f:  $V(T_N) \rightarrow \{1,2,\dots,q+1\}$  by

 $f(\mathbf{u}_i) = 5i - 4, 1 \le i \le n$ 

 $f(v_i) = 5i-2, 1 \le i \le n-1$ 

 $f(x_i) = 5i-3, 1 \le i \le n-1$ 

 $f(y_i) = 5i, 1 \le i \le n-1$ 

Then the edges are labeled with,

 $f(u_i x_i) = 5i-4, 1 \le i \le n-1$ 

 $f(x_i v_i) = 5i-3, 1 \le i \le n-1$ 

 $f(u_iu_{i+1})=5i-2,1\le i\le n-1$ 

 $f(v_iy_i) = 5i-1, 1 \le i \le n-1$ 

 $f(y_i u_{i+1}) = 5i, 1 \le i \le n-1$ 

In the above labeling pattern, f is a Geometric mean labeling of  $T_N$  and the labeling pattern shown in the following figure.

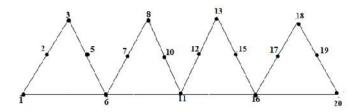


Figure 2.

Case(iii): Subdividing all the edges of T<sub>n</sub>.

Let  $T_N$  be graph which is obtained by subdividing all the edges of  $T_n$ .

Let  $x_i$ ,  $y_i$  and  $t_i$  be the new vertices which are subdividing the edges  $u_i v_i$ ,  $v_i u_{i+1}$  and  $u_i u_{i+1}$ ,  $1 \le i \le n-1$ .

Define a function

f:  $V(G) \to \{1,2,...,q+1\}$  by

 $f(u_i) = 6i-5, 1 \le i \le n$ 

 $f(v_i) = 6i-2, 1 \le i \le n-1$ 

 $f(x_i) = 6i-3, 1 \le i \le n-1$ 

 $f(y_i) = 6i, 1 \le i \le n-1$ 

 $f(t_i) = 6i-4, 1 \le i \le n-1$ 

Edges are labeled with

 $f(u_i t_i) = 6i-5, 1 \le i \le n-1$ 

 $f(u_i x_i) = 6i-4, 1 \le i \le n-1$ 

 $f(x_i v_i) = 6i-3, 1 \le i \le n-1$ 

 $f(t_i u_{i+1}) = 6i-2, 1 \le i \le n-1$ 

 $f(v_i y_i) = 6i-1, 1 \le i \le n-1$ 

 $f(y_iu_{i+1}) = 6i, 1 \le i \le n-1$ 

From the above labeling pattern, f is a Geometric mean labeling of  $T_N$ . The labeling pattern is shown in the following figure.

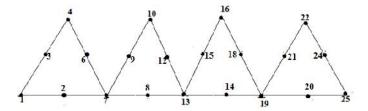


Figure 3.

From all the above cases, we conclude that subdivision of Triangular snake is a Geometric mean graph.

**Theorem 2.2:** Subdivision of any Alternate Triangular Snake is a Geometric mean graph.

**Proof:**Let A(T<sub>n</sub>) be the Alternative Triangular Snake

Let  $S(A(T_n)) = D(T_N)$  be the graph which is obtained by subdividing all the edges of  $A(T_n)$ . Here we consider the following cases.

Case (i): If the triangle starts from  $u_1$ .

Let  $S(A(T_n)) = S(T_N)$  be the graph which is obtained by subdividing all the edges of  $A(T_n)$ . Let  $t_i$ ,  $x_i$ , and  $y_i$  be the new vertices which subdivide the edges  $u_i u_{i+11}$ ,  $u_i v_i$ , and  $v_i u_{i+11} \le i \le n$ . Then we need to considered two subcases

#### Subcase(i) (a): If n is odd, then

Define a function f:  $V(A(T_N)) \rightarrow \{1,2...q+1\}$  by

$$f(u_i) = 4i-3, \forall i = 1,3,5...n$$

$$f(u_i) = 4i-1, \forall i = 2,4,6...n-1.$$

$$f(t_i) = 4i+2, \forall i = 1,3,5....n-1.$$

$$f(t_i) = 4i, \forall i = 2,4,6....n-1.$$

$$f(v_i) = 8i-5, \forall i = 1,2,3.....\frac{n-1}{2}$$

$$f(x_i) = 8i-6, \forall i = 1,2,3.....\frac{n-1}{2}$$

$$f(v_i) = 8i-5, \ \forall i = 1,2,3......\frac{n-1}{2}$$

$$f(x_i) = 8i-6, \ \forall i = 1,2,3......\frac{n-1}{2}$$

$$f(y_i) = 8i-3, \ \forall i = 1,2,3......\frac{n-1}{2}$$

From the above labeling pattern, we get the edges labels are all distinct. Thus f provides a Geometric mean labeling for  $A(T_N)$ . The labeling pattern is shown in the following figure.

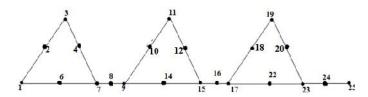


Figure 4.

#### Subcase (i) (b): If n is even

Define a function  $f:V(T_N) \to \{1,2...q+1\}$  by

$$f(u_i) = 4i-3, \forall i = 1,3,5...n-1.$$

$$f(u_i) = 4i-1, \forall i = 2,4,6....n.$$

$$f(t_i) = 4i+2, \forall i = 1,3,5....n-1.$$

$$f(t_i) = 4i, \forall i = 2,4,6....n-1.$$

$$f(v_i) = 8i-5, \forall i = 1,2,3.....\frac{n}{2}$$

$$f(x_i) = 8i-6, \forall i = 1,2,3.....\frac{\bar{n}}{2}$$

$$f(y_i) = 8i-3, \forall i = 1,2,3.....\frac{n}{2}$$

Then the edge labels are all distinct. Hence the mapping f is a Geometric mean labeling of  $A(T_N)$ . The labeling pattern shown in the following figure.

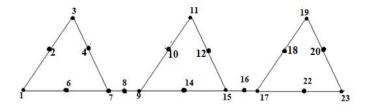


Figure 5.

Case (ii): If the triangle starts from  $u_2$ .

Let  $S(A(T_n) = A(T_N))$  be the graph obtained by subdividing all the edge of  $A(T_n)$ .

Let t<sub>i</sub>, x<sub>i</sub>,y<sub>i</sub> be the new vertices which are subdivide the edges  $u_iu_{i+1}$   $u_{i+1}$   $v_i$  and  $v_iu_{i+2}$   $1 \le i \le n-1$ . Then we consider two subcases

### Subcase (i) (a): If n is odd.

Define a function f:  $V(A(T_N)) \rightarrow \{1,2...q+1\}$  by

$$f(u_i) = 4i-3, \forall i = 1,3,5...n$$

$$f(u_i) = 4i-5, \forall i = 2,4,6....n-1.$$

$$f(t_i) = 4i-2, \forall i = 1,3,5....n-1.$$

$$f(t_i) = 4i, \forall i = 2,4,6....n-1.$$

$$f(v_i) = 8i-3, \forall i = 1,2,3.....\frac{n-1}{2}$$

$$f(v_i) = 8i-3, \forall i = 1,2,3.....$$
  
 $f(x_i) = 8i-4, \forall i = 1,2,3.....$ 

$$f(y_i) = 8i-2, \forall i = 1,2,3.....\frac{n-1}{2}$$

From the above labeling pattern, we get the edges labels are all distinct. Thus f is a Geometric mean labeling of A(T<sub>N</sub>) and the labeling pattern is displaced below.

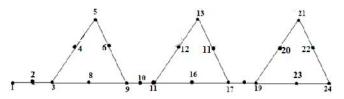


Figure 6.

### Subcase (ii) (b): If n is even

Define a function f:  $V(A(T_N)) \rightarrow \{1,2...q+1\}$  by

$$f(u_i) = 4i-3, \forall i = 1,3,5....n-1$$

$$f(u_i) = 4i-5, \forall i = 2,4,6...n.$$

$$f(t_i) = 4i-2, \forall i = 1,3,5....n-1.$$

$$f(t_i) = 4i, \forall i = 2,4,6....n-1.$$

$$f(v_i) = 8i-3, \forall i = 1,2,3...$$

$$f(x_i) = 8i-4, \forall i = 1,2,3.....\frac{n-2}{2}$$

$$f(v_i) = 8i-3, \ \forall i = 1,2,3......\frac{n-2}{2}$$

$$f(x_i) = 8i-4, \ \forall i = 1,2,3......\frac{n-2}{2}$$

$$f(y_i) = 8i-2, \ \forall i = 1,2,3......\frac{n-2}{2}$$

From the above labeling pattern, we get the edges labels are all distinct. Thus f is a Geometric mean labeling of A(T<sub>N</sub>) and the labeling pattern is displaced below.

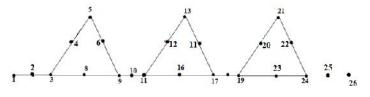


Figure 7.

From all the above cases, we conclude that Subdivision of Alternate Triangular Snakes are Geometric mean graphs.

# REFERENCES

- 1. Gallian, J.A. 2010. A Dynamic survey of Graph labeling. The Electronic Journal of Combinatories, 17 (#DS6).
- 2. Frank Harary, Graph Theory, 2001. Narosa publishing House Reading New Delhi.

- 3. Somasundaram, S. and Ponraj, R. 2003. Mean Labeling of Graphs, *National Academy of Science letters*, vol 26, p210-213.
- 4. Somasundaram, S., Ponraj, R. and Sandhya, S.S. Harmonic Mean Labeling of Graphs Communicated to Journal of Combinatorial Mathematics and Combinatorial Computing.
- 5. Somasundaram, S., Vidhyarani, P. and R. Ponraj, 2001. Geometric mean labeling of graphs, Bulletin of Pure and Applied Sciences 30E(2) p153-160.

\*\*\*\*\*