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1. INTRODUCTION 
 
In recent years there has been an increasing interest in modified 
theories of gravity in view of the direct evidence of late time 
acceleration of the universe and the existence of the dark matter 
and dark energy (Reiss et al., 1980; Permutter
Bennet et al., 2003). In particular, f(R) theory of gravity 
formulated by Nojiri and Odinstov (2003a) and f(R,T) theory 
of gravity proposed by Harko et al. (2011) are attracting more 
and more attention. It has been suggested that cosmic 
acceleration can be achieved by replacing Einstein
action of general relativity with a general function f(R) (R 
being the Ricci Scalar curvature). Carroll et al
and Odinstov, (2003b, 2004, 2007) and Chiba 
some of the authors who have investigated several aspects of 
f(R) gravity. Very recently, Adhav, (2012), Reddy 
(2012a, 2012b) have investigated Bianchi type
Kaluza-Klein perfect fluid cosmological model in f(R,T) theory 
of gravity. Also we have investigated LRS Bianchi type
universe, by using a special law of variation for Hubble’s 
parameter which represents cosmological model with a 
constant deceleration parameter in f(R,T) gravity.
Motivated by the above investigations we study s
homogeneous LRS Bianchi type-I anisotropic cosmological 
 
*Corresponding author: Santhi Kumar, R.  
Aditya Institute of Technology and Management, K. Kotturu, Tekkali
532203, Srikakulam Dist, Andhra Pradesh, India 

ISSN: 0975-833X 

 

Article History: 
 

Received 19th May, 2016 
Received in revised form  
21st June, 2016 
Accepted 14th July, 2016 
Published online 20th August, 2016 
 

Citation: Santhi Kumar, R. and Suryanayana, K.P.S.
Journal of Current Research, 8, (08), 35952-35954. 
 

Key words: 
 

Modi ed gravity, 
Stiff uid. 

 

 

                                                  

 
RESEARCH ARTICLE 

 

I COSMOLOGICAL MODEL IN F(R,T) GRAVITY WITH STIFF FLUID
 

Santhi Kumar, R. and Suryanayana, K.P.S. 
 

Institute of Technology and Management, K. Kotturu, Tekkali-532203
Andhra Pradesh, India 

 
    

ABSTRACT 

Field equations in a modi ed theory of gravitation proposed by Harko 
024020, 2011) are obtained with the aid of a spatially homogeneous and anisotro

I metric. Cosmological models corresponding to stiff uid obtained.
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models corresponding to physica
distribution namely stiff fluid in f(R,T) gravity. These models 
are very important in the discussion of large scale structure and 
to realize real picture of the universe in its early stages. They 
are also necessary to study the evoluti
 
This chapter is organized as follows: 
field equations of f(R,T) gravity are derived with the help of 
Bianchi type - I metric in the presence of perfect fluid 
distribution. Section 3, is devoted to the solution of
equations. Cosmological models corresponding to stiff fluid
studied. The last section contains some conclusions.
 
2. METRIC AND FIELD EQUATIONS
 
We consider a homogeneous LRS Bianchi type
given by 
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where A and B are functions of cosmic time t.
 
The field equations of f(R,T) gravity are
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models corresponding to physically important matter 
distribution namely stiff fluid in f(R,T) gravity. These models 
are very important in the discussion of large scale structure and 
to realize real picture of the universe in its early stages. They 
are also necessary to study the evolution of the universe. 

This chapter is organized as follows: In the section 2, the 
field equations of f(R,T) gravity are derived with the help of 

I metric in the presence of perfect fluid 
distribution. Section 3, is devoted to the solution of the field 
equations. Cosmological models corresponding to stiff fluid is 
studied. The last section contains some conclusions. 

METRIC AND FIELD EQUATIONS 

We consider a homogeneous LRS Bianchi type–I space–time 
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where A and B are functions of cosmic time t. 

The field equations of f(R,T) gravity are 
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Here      �� =
��(�,�)

��
,								�� =

��(�,�)

��
	 = ∇�∇�  ,  ∇�is the co-

variant derivative and���is the standard matter energy-

momentum tensor derived from the LagrangianLm. It may be 
noted that when f(R,T) ≡f(R) the equation (2) yield the field 
equations of f(R) gravity. The problem of the perfect fluids 
described by an energy density ρ, pressure p and four 
velocity��is complicated since there is no unique definition of 
the matter Lagrangian. However, here, we assume that the 
stress energy tensor of the matter is given by 
 

���= (� + �)���� ����       (4) 
 

and the matter Lagrangian can be taken as�� = �and we 
have  
 
�	�∇��� = 0,							�	��� = 1       (5) 
 
Then with the use of Equations (5) we obtain for the variation 
of stress-energy of perfect fluid the expression 
 
���= 2��� ����                 (6) 

 
Generally, the field equations also depend through the tensor  
���, on the physicsl nature of the matter field. Hence in the case 

of f(R,T) gravity depending on the nature of the matter source, 
we obtain several theoretical models corresponding to each 
choice of f(R,T). Assuming  
 
�(�,�)= � + 2�(�)              (7) 
 
as a first choice where f(T) is an arbitrary function of the trace 
of stress-energy tensor of matter, we get the gravitational field 
equations of  f(R,T) gravity from Eq. (2) as   
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where the prime denotes differentiation with respect to the 
argument. 
 
If the matter source is a perfect fluid, 
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then the field equations become 
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Using co-moving coordinates and equations (4)-(6) f(R, T) 
gravity field equations (8) with the particular choice of the 
function (Harko et al., 2011) 
 
�(�)= ��  ,� is constant for the metric (1) take the form 
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where an over head dot denotes differentiation with respect to 
cosmic time t.  
 
The spatial volume for the metric (1) is given by  
� = ��� (13) 
 

We define � = 	(���)
�

�as the average scale factor of the space-
time (1) so that the Hubble’s parameter is  
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We define the generalized Hubble’s parameter H as 
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Where �� =
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�
,�� =

�

�
	,�� = ��  are the directional Hubble’s 

parameters in the direction of x,y,z respectively.                             
The scalar expansion θ, shear scalar �� and the average 
anisotropy parameter ��  are defined by 
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Where �� = �� � (�= 1,2,3) 
 
3. SOLUTIONS AND THE MODELS 
 
When 	� = �(Stiff fluid Model or Zeldovich Model) 
 
The field equations (10)-(12) are a system of three independent 
equations in four unknowns A,B, �and �. Hence to obtain 
determinate solutions, we consider the following physically 
important cases and discuss the corresponding cosmological 
models. In this particular case, the field equations (10 +12) 
reduce to 
 
�

�
+

�

�
+

��

�� + 3
�

�

�

�
= 0           (19) 

 
Eq.(19) being highly non-linear, we use the condition that the 
scalar expansion θ is proportional to shear scalar �of the space-
time so that 
 
� = ��                                   (20) 
 
where m>1 is a constant (Collins et al.1980) 
 
Now, using Eq.(20) in(19) we get the metric coefficients as  
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where C1 and C2 are constants of integration. By a suitable 
choice of integration constants (i.e., C1=1,C2=0) the metric(1) 
with the help of (21) can, now, be written as  
 

��� = ��� (��)
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Eq.(22) represents Bianchi type-I stiff fluid (Zeldovich fluid) 
cosmological model in f(R,T) gravity with the following 
physical and kinematical parameters which are important in the 
discussion of cosmological models. 
 
Spatial volume in the model is  
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Hubble’s parameter is  
 

� = (
�� ��

��
)(	

�

�
)	                                    (24) 

 
The scalar expansion is  
 

� = (
�� ��

�
)(	

�

�
)                                     (25) 

 
The shear scalar is 
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The anisotropy parameter is  
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Also lim�→ ∞
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The pressure and density in the model is  
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From the above results, we observe that the volume scale factor 
of the universe increases with the growth of cosmic time. In the 
beginning of the universe, i.e., at t=0, the Hubble parameter, 
the scalar expansion, the shear scalar, pressure and density  
 
 
 
 
 
 
 
 
 

assumed infinitely large values whereas with the growth of 
cosmic time ( i.e. as t→0 ) they decrease to null values as t→∞. 
Also stiff fluid model plays a vital role in the discussion of 
early stages of evolution of the universe. However, in view of 
the major development in modern cosmology our universe will 
make a transition from decelerating phase to accelerating one 
as confirmed by anisotropic cosmic microwave background 
radiation (CMBR). This is possible by cosmic re collapse. 
 
4. Conclusions 
 
Here we have investigated LRS Bianchi type-I cosmological 
model in f(R,T) gravity. In particular, we have studied stiff 
fluid, and anisotropic models in the modified f(R,T) gravity. It 
is well known that anisotropic models represent cosmos in its 
early stage of evolution and isotropic FRW models represent 
present day universe. It is observed that all the above models in 
f(R,T) gravity have stability and have no initial singularity. It 
may also be noted that even though the early universe in f(R,T) 
theory of gravity decelerates in the standard way, it will 
accelerate in finite time thus establishing with the present day 
accelerated expansion of the universe. This is possible by 
cosmic recollapse of the universe in finite future as the universe 
in turns inflates, decelerates and then accelerates (Nojiri and 
Odintsov, 2003). 
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