

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 8, Issue, 07, pp.35108-35113, July, 2016 INTERNATIONAL JOURNAL OF CURRENT RESEARCH

# **RESEARCH ARTICLE**

# ISOLATION, AMPLIFICATION AND SEQUENCE ANALYSIS OF THE GENE ENCODING ENOLASE FROM LYMPHATIC FILARIAL PARASITE BRUGIA MALAYI

# Mangalam, P., Balasubramaniyan, R. and \*Vasuki, V.

Vector Control Research Centre (ICMR), Indira Nagar, Medical Complex, Puducherry 605 006, India

| ARTICLE INFO                                                                                                                                                                                                                                                                                                          | ABSTRACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Article History:<br>Received 24 <sup>th</sup> April, 2016<br>Received in revised form<br>23 <sup>rd</sup> May, 2016<br>Accepted 10 <sup>th</sup> June, 2016<br>Published online 31 <sup>st</sup> July, 2016<br>Key words:<br>Enolase,<br>Brugia malayi,<br>Amplification,<br>Sequence analysis,<br>Phylogenetic tree. | Lymphatic filariasis, caused by <i>Brugia malayi</i> , commonly known as elephantiasis, is a neglected tropical disease. No vaccines are available for the prevention of filarial infections. A number of pathogenic organisms including filarial parasites display specialized proteins on their cell surface to assist in invasion. One of the best characterized is the glycolytic enzyme enolase. Enolase represents a multifunctional protein involved in basic energy metabolism in pathogens. In the present study, gene encoding enolase of <i>B. malayi</i> was isolated, amplified and identified by sequencing. The amplification and sequencing was done using specific primers. The primers were designed based on the complete genome contig sequence of <i>B. malayi</i> to amplify the cDNA of enolase. The full length cDNA of this gene from <i>B. malayi</i> was obtained by overlapping the sequences of both amplification products using BioEdit version. The results showed that the full length cDNA comprised of 1314 bp. The gene encoding enolase from <i>B. malayi</i> ( <i>BmEno</i> ) was identified by BLAST result. The sequence of the <i>B. malayi</i> enolase was found to be identical to that of the <i>B. malayi</i> partial coding sequences. The complete coding sequence of <i>B. malayi</i> enolase was submitted to GenBank and accession number (KF830990.1) was obtained. Phylogenetic analysis of <i>B. malayi</i> enolase revealed the occurrence of homology with closely related filarial parasites. Further studies are being carried out to clone and express the enolase gene in the expression vector to study its enzyme activity for therapeutic potential. |  |  |

*Copyright©2016, Mangalam et al.* This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Mangalam, P., Balasubramaniyan, R. and Vasuki, V. 2016. "Isolation, amplification and sequence analysis of the gene encoding Enolase from lymphatic filarial parasite *Brugia malayi*", *International Journal of Current Research*, 8, (07), 35108-35113.

# **INTRODUCTION**

Lymphatic filariasis caused by filarial nematode parasites Wuchereria bancrofti, Brugia malayi, and Brugia timori, is estimated to infect over 129 million people in tropical and subtropical areas worldwide (WHO, 2012). Internationally, approximately 15 million people are affected by lymphatic filariasis related lymphoedema (or elephantiasis), which includes swelling of the limbs, breasts or genitals, and almost 25 million are affected by urogenital swelling, primarily scrotal hydrocele (Michael et al., 1996). Even though these clinical manifestations are not often fatal, they lead to lymphatic filariasis being ranked as one of the world's leading causes of permanent and long-term disability. In 1997, the World health Assembly resolved to eradicate lymphatic filariasis as a public health problem (WHO, 1997). A number of studies using single dose treatment of diethylcarbamazine, albendazole or ivermectin alone, or in various combinations

\*Corresponding author: Vasuki, V.

Vector Control Research Centre (ICMR), Indira Nagar, Medical Complex, Puducherry 605 006, India.

have been carried out for the treatment of lymphatic filarial infection. However, there is a need for additional treatment strategies together with the identification of novel antifilarial (macrofilaricidal) drug targets and development of molecular currently vaccines since available drugs such as diethylcarbamazine, albendazole and ivermectin do not kill the adult parasites. Parasites living in their mammalian host are entirely dependent on glucose, abundantly available in the blood. Metabolic studies performed on bloodstream-form of parasites have shown that glycolysis represents the only process through which ATP is synthesized by the parasite. Inhibition of glycolysis, therefore, leads to rapid death of these parasites (Engel et al., 1987). Glycolytic enzymes play an important role in parasites. Due to their importance in parasites for energy fabrication and further physiological functions, glycolytic enzymes can serve as important therapeutic targets (Vivas et al., 2005). Numerous pathogens have developed an approach to interact with host components for adherence, cell invasion, intracellular survival, persistence and tissue invasion (Chhatwal and Preissner, 2000).

Enolase is a multifunctional enzyme after incorporated in a innovative cluster of proteins, called moonlighting proteins, that are present on the surface of several pathogens, although they lack a single peptide to be secreted or a transmembrane region to be anchored to the surface of cells (Pancholi, 2001; Jefferry, 2009). Enolase has been characterized in detail as a plasminogen receptor in dissimilar pathogens: bacteria (Bergmann et al., 2001; Jones and Holt, 2007), fungi (Jong et al., 2003) and protozoa (Vanegas et al., 2007; Mundodi et al., 2008) and it has been found in the tissue of Onchocerca volvulus (Jolodar et al., 2003), Fasciola hepatica and in the secretions of Echinostoma caproni (Bernal et al., 2004; Marcilla et al., 2007). Therefore, enolase is an important protein in the energy metabolism and development of filarial nematodes, but relatively few studies of this molecule in B. *malayi* have been reported. In this study, we give an account of the isolation, amplification and sequence analysis of the gene encoding enolase from *B. malayi*. The results will increase our understanding of enolase in the filarial parasite and lead to the designing and development of new chemotherapeutic tools.

## **MATERIALS AND METHODS**

## Preparation of B. malayi L3 stage

Filarial parasite, B. malayi (sub-periodic) was maintained in the animal model Mastomys coucha in the animal house at Vector Control Research Centre (VCRC), Pondicherry (India) for coding institutional reference. Laboratory reared Ae. aegypti Liverpool strain susceptible to B. malayi infection maintained in our laboratory was used as mosquito host for the development of the arthropod stages (mf,  $L_1$ ,  $L_2$  and  $L_3$ ) of the parasites. L<sub>3</sub> stage of *B. malayi* was responsible for the amplification of enolase gene. M. coucha was infected by inoculating L3 stage B. malayi subcutaneously or intraperitoneally. L<sub>3</sub>s migrated to different organs, reproduced and mf released in the circulating blood. Infected animal was used for feeding Ae. aegypti (Liverpool strain) mosquitoes for infection and development of *B. malayi* L<sub>3</sub> stage (Paily *et al.*, 1995). Institutional Animal ethical clearance was obtained from the committee for the use of laboratory animals in the above experiments. Initially, the eggs of Ae. aegypti Liverpool strain were floated and grown up to fourth instar by feeding larval food and it was maintained carefully until the emergence of pupae. The pupae that emerged were collected and kept in the paper cup containing water inside a cage for adult mosquitoes. The adult mosquitoes were allowed to feed on B. malayi infected M. coucha. These mosquitoes were separately maintained (at 25°C, 70-80% RH) on raisins till the development of the infective  $(L_3)$ .  $L_3$  stage parasites were harvested on day 12post feeding. Harvested B. malayi L<sub>3</sub>s were stored in trizol reagent for RNA extraction.

## **RNA extraction and conversion to cDNA by RT-PCR**

Total RNA from  $L_3$  parasites stored in Trizol was extracted using the total RNA Mini prep (Axygen, Scientific Inc, USA) kit according to the manufacturer's instructions and quantified using a spectrophotometer (Genequant, Amersham Biosciences, USA). The total RNA was converted into first strand cDNA by using reverse transcriptase. The RT reaction mixture contained 7.0 µl of water, 2.0 µl of buffer, 2.0 µl of dNTP's, 1.0 µl of RNase inhibitor, 2.0µl of Oligo dT, 1.0 µl of Sensiscript RT and 5.0 µl of total RNA. RT reaction was performed at 37°C for 5 min, 65°C for 10 sec. The RT product was confirmed with L3 specific primers ( $L_3F$  and  $L_3R$ ) by PCR. The reaction mixture for the confirmation of the RT product contained 12 µl of Go Tag Green Master mix, 2.0 µl of L<sub>3</sub>F, 2.0 µl of L<sub>3</sub>R, 3.0 µl of RT product and 5.5 µl of water. PCR was performed at 94°C for 5 min, followed by 35 cycles at 94°C for 1 min, 55°C for 1 min, 72 °C for 1 min and final extension was carried out at 72°C for 10 minutes. The amplified product was run on 1% (wt/v) agarose gel electrophoresis, followed by ethidium bromide staining and visualized under UV transillumination. The confirmed first strand cDNA was used as template for the amplification of BmEno.

## **Amplification of Enolase Gene by PCR**

First-strand cDNA was synthesized from B. malavi L<sub>3</sub> RNA using the Sensiscript (Qiagen, Germany). The cDNA of the B. malayi enolase (BmEno) was amplified using two sets of degenerate primers designed using B. malayi full genome contig sequence (GenBank accession number gi/170582776). Extensive optimizations were carried out using different concentrations of the constituents of reaction mixture and the PCR amplification protocols. The reaction mixture (25 µl) for the amplification of PCR contained 12.5 µl of Go Tag Green Master Mix, 10-20 pmol of each primer, 3-5 µl of RT product and made up to 25 ul with Milli Q water. PCR was performed at 94°C for 3-5 min, followed by 35 cycles at 94°C for 30 sec-1 min, 52-56°C for 30 sec-1.5 min, 72 °C for 0.5-1 min and a final extension step at 72°C for 5-10 min. All reactions were performed in a thermal cycler (Eppendorf, Germany). The PCR product was electrophoresed in an agarose gel (1.0%) and a band of the expected size (1.3Kb) was observed.

## Sequence analysis

The PCR product of *B. malayi* enolase was purified using Nucleospin® Gel purification kit (Macherey-Nagel, Germany) as recommended by the manufacturers. Sequencing reactions were carried out in both directions using same forward and reverse primers in an automated DNA sequencer (3130X1 Genetic analyser, Applied bio-systems/HITACHI), in both forward and reverse direction. The contig sequences were assembled with Bio-Edit (Version 7.0). The sequence of the amplified product for identification was made using the BLAST engine (NCBI).

### Phylogenetic analysis of B. malayi enolase

Phylogenetic analysis of the *B. malayi* enolase was performed with molecular evolutionary genetic analysis software (Mega4) (Tamura *et al.*, 2007). The evolutionary relationship of the newly isolated gene encoding enolase of *B. malayi* was compared with closely related filarial parasites and a phylogenetic tree was constructed using amino acid sequence of *B. malayi* enolase with other filarial parasites. The evolutionary history was inferred using the Neighbor-joining method (Saitou and Nei, 1987). The percentage of replicate

trees in which the associated taxa clustered together in the bootstrap test are shown next to the branches (Felsenstein, 1985). The evolutionary distances were computed using the Poisson Correction Method (Zuckerkandl and Pauling, 1965) and are in the units of the number of amino acid substitutions per site.

## **RESULTS AND DISCUSSION**

## Preparation of sample and RNA extraction

Infected animal model *M. coucha* which showed 100 mf/20µl of peripheral blood was used for feeding *Ae. aegypti* (Liverpool strain) mosquitoes for infection and development of *B. malayi* L<sub>3</sub>s. Infective (L<sub>3</sub>) stage parasites of 40-50 numbers were harvested from infected animals. Harvested L<sub>3</sub>s stored in Trizol was used as the parasite source for the extraction of total RNA. Total RNA (~ 50 ng/ul) was extracted from the parasite and utilized for the conversion to cDNA using RT-PCR. Converted cDNA was confirmed with L<sub>3</sub> specific primers by PCR. The confirmed cDNA was used as template for the amplification of *B. malayi* enolase.

### Amplification of 1.3 kb enolase by PCR

Out of two sets of primers designed and used for amplification of cDNA of the *B. malayi*, second set of primers with the following sequences:

BmEnoF:

# (5'<u>CGCGGATCCG</u>ATGCCGATCACACGTGTTCACG-3') and

#### BmEnoR:

(5'<u>AAACTGCAG</u>TTACTATGCTTGAGGATTTCGGAACT T-3'), resulted in successful amplification of the BmEno specific band of 1.3 kb length. The optimized reaction mixture (25 ul) for the amplification of PCR contained 12.5 µl of Go Taq Green Master Mix, 20 pmol of each primer, 3 µl of RT product, 5.5 µl of water. The optimum annealing temperature was found to be 55°C. Standardized PCR protocol was performed at 94°C for 5 min, followed by 35 cycles at 94°C for 1 min, 55°C for 1 min, 72 °C for 1 min and a final extension step at 72°C for 10 min. An intense single band of size 1.3 kb was visible on 1% agarose gel stained with ethidium bromide (Fig.1). No bands were visible in negative control, indicating that the amplified DNA was a copy of the specific gene of the template and the primers were highly specific for the enolase gene. The use of specific primers coupled with the size of 1.3 kb of the amplified product indicated that the amplified product was enolase gene. When the size of the BmEno was compared with the earlier amplified enolase genes reported from other sources, O. volvulus (1615 bp) (Jolodar et al., 2003) and Haemonchus contortus (1583bp) (Kaikai Han et al., 2012) were both bigger than the B. malayi enolase gene. But the gene encoding enolase of B. malayi was longer than Wuchereria bancrofti (624bp) (EJW79927. 1:Vasuki and Hoti, 2008). cDNA length of B. malayi enolase was similar to Loa loa enolase (1314bp) (EU370162.1: Nutman et al., 2010).

#### Sequence analysis

Sequencing reactions carried out in both directions using the same forward and reverse primers in an automated DNA

sequencer revealed a sequence of 1314 bp which could be read from Chroma software (Goodstadt and Ponting, 2001). As shown in the figure 2, the sequence has an ATG codon at nucleotide position 1-3 and a termination codon at 1312-1314. The sequence was compared with the published sequence (Fig.3) which showed homology of 99% (*B. malayi* partial cds, XM 001896246.1), 99% (*Onchocerca volvulus* complete cds, AF532606.1) and 89% (*Loa loa* complete cds, EU370162.1). The nucleotide sequence of *B. malayi* enolase was submitted to GenBank and accession number KF830990.1 obtained. The GC content of the amplified gene was 40% and AT content was 60%. Our study forms the first report on the amplification of the complete coding sequence of enolase gene of *B. malayi* infective (L<sub>3</sub>) stage.

## **Phylogenetic analysis**

While analysing the phylogenetic tree, *B. malayi* enolase showed high evolutionary relationship with other filarial parasites (Fig.4 and Table 1). The evolutionary relationship of *BmEno* with other filarial parasites was inferred using NJ method. A total of 500 replicates were analysed using bootstrap test. When the evolutionary distances were computed using Poisson correction method, *B. malayi* and *Wuchereria bancrofti* occupied in the same cluster in the phylogenetic tree, indicating high evolutionary relationship with *W. bancrofti* than other related filarial parasites. All positions containing gaps and missing data were eliminated from the dataset (Complete deletion option).

 Table 1. Gene, amino acid, GenBank accession number of organisms which were used for the construction of phylogenetic tree

| Organisms              | Gene    | Amino acid | GenBank Acc. No |  |
|------------------------|---------|------------|-----------------|--|
| Wuchereria bancrofti   | Enolase | 253        | EJW79927.1      |  |
| Onchocerca volvulus    | Enolase | 435        | AAP81756.1      |  |
| Loa loa                | Enolase | 437        | EFO27563.1      |  |
| Ascaris suum           | Enolase | 436        | ADQ00605.1      |  |
| Haemonchus contortus   | Enolase | 433        | AIZ75644.1      |  |
| Caenorhabditis elegans | Enolase | 434        | NP495900.1      |  |



Fig. 1. Agarose gel electrophoresis of PCR product of *Brugia malayi* enolase Lane M, 1 kb ladder, Lane 1, Negative ;Lane 2, PCR amplified enolase gene (1.3 kb)

| ORIGIN |            |            |            |            |            |              |
|--------|------------|------------|------------|------------|------------|--------------|
| 1      | atgccgatca | cacgtgttca | cgcccgtcct | atttatgatt | cacgtggtaa | tccaaccgtc   |
| 61     | gaagttgatt | tgaccaccga | caaaggtatt | ttccgtgcgg | ctgtaccaag | tggtgcttca   |
| 121    | actggtgtac | atgaagcact | tgaacttcgg | gacaatgata | aagctgtgaa | tcatggcaaa   |
| 181    | ggtgttttga | aagctgtaag | aaatgtcaac | gaacatattg | gacctgctct | agttgctaag   |
| 241    | aatttttgtc | caactcaaca | acgtgaaatc | gaccatttta | tgctagaact | cgatggaacc   |
| 301    | gaaaataaag | caaaactggg | tgccaatgca | attttgggtg | tttcattggc | ggtttgcaag   |
| 361    | gctggtgcag | tgcataaagg | tatgccgttg | tataagtata | tagcagaatt | ggctggtacc   |
| 421    | aaacagattg | ttctgccagt | tectgetatg | aatgttatca | acggtggttc | tcatgctggt   |
| 481    | aataaactgg | caatgcagga | atttatgatc | atgcctattg | gagetagtte | attcagtgaa   |
| 541    | gcaatgcgca | tgggttctga | aatttaccat | tacttgaagg | cagaaatcaa | aaaacgatac   |
| 601    | ggtctcgatg | caacagcagt | gggtgatgaa | ggtggtttcg | ctcctaatat | tcaggataac   |
| 661    | agggaaggtc | ttgatttgtt | gaatacagca | attgcaacag | ctggatacac | gggaaaagta   |
| 721    | gcaattgcta | tggattgtgc | cgcatcagaa | tattatatgg | aatcagctaa | gctgtacgat   |
| 781    | ttagacttca | aaaatccaaa | ctcggataaa | gcccagtgga | aaactggtga | tcaaatgatg   |
| 841    | gaaatctatc | aatccttcat | taaggaatat | ccagttgtat | cgattgagga | ttggtttgac   |
| 901    | caggatgact | gggaaaattg | gaccaaagca | ttggctaata | cgcatattca | aattgttggc   |
| 961    | gatgacttaa | ctgttacgaa | tcctaagaga | attgctatgg | ctgctgagaa | gaaagcttgc   |
| 1021   | aactgcctgt | tactcaaggt | taatcaaatt | ggctcagtga | ctgaatcaat | tgatgcggct   |
| 1081   | aacttagcac | gtaaaaatgg | atggggtgta | atggtatcgc | atcgttcagg | tgaaacggaa   |
| 1141   | gatacattta | tcgctgatct | cgtcgttgga | cttgctaccg | gacagatcaa | aactggagca   |
| 1201   | ccatgtcgtt | cggagcgtct | cgccaaatac | aatcagatac | ttcgtattga | agaagaactt   |
| 1261   | ggatcagctg | ccatttacgc | tggtcaaaag | ttccgaaatc | ctcaagcata | g <u>taa</u> |

Fig.2. Complete coding sequence of Brugia malayi enolase gene [initiation (ATG) and termination sites (TAA) underlined].

Brugia malayi enolase partial mRNA Sequence ID: <u>seff XM 001896246.1</u> Length: 1377Number of Matches: 1

| Score          | Expect | Identities     | Gaps       | Strand                                                    |      |
|----------------|--------|----------------|------------|-----------------------------------------------------------|------|
| 2412 bits(1306 | 0.0    | 1309/1311(99%) | 0/1311(0%) | Plus Plus                                                 |      |
| Query 1        | ATGCCG | ATCACACGIGITO  | ACCCCCTC   | CTATTTATGATTCACGTGGTAATCCAACCGTC                          | 60   |
| Sbjet 45       | ATGCCG | ATCACACGTGTTC  | ACCCCCTC   | CTATTTATGATTCACGTGGTAATCCAACCGTC                          | 104  |
| Query 61       | GAAGTT | GATTTGACCACCO  | ACAAAGGTA  | TTTTCCGTGCGGCTGTACCAAGTGGTGCTTCA                          | 120  |
| Sbjet 105      | GAAGIT | GATTTGACCACCO  | ACAAAGGTA  | ITTTCCGTGCGGCTGTACCAAGTGGTGCTTCA                          | 164  |
| Query 121      | ACTOST | GTACATGAAGCAC  | TTGAACTTC  | OGGACAATGATARAGCTGTGAATCATGGCARA                          | 180  |
| Sbjet 165      | ACTOST | GTACATGAAGCAC  | TIGAACTIC  | GGGACAATGATAAAGCTGTGAATCATGGCAAA                          | 224  |
| Query 181      | GGTGTT | TTGAAAGCTGTAI  | GAAATGTCA  | ACGAACATATTGGACCTGCTCTAGTTGCTAAG                          | 240  |
| Sbjet 225      | GETETT | TIGAAAGCTGTAI  | GAAATGTCA  | ACGAACATATTOGACCTGCTCTAGTTGCTAAG                          | 284  |
| Query 241      | AATTTT | TGTCCAACTCAAC  | AACGTGAAA  | TEGRECATITTATGETAGRACTEGATGGRACE                          | 300  |
| Sbjet 285      | ANTTT  | TETCCAACTCAAC  | AACGTGAAA  | TEGACCATTTTATGETRGAACTEGATGGAACE                          | 344  |
| Query 301      | GAAAAT | ARAGCARARCTO   | GTGCCAATG  | CARTTTGGGTGTTTCATTGGCGGTTTGCAAG                           | 360  |
| Sbjet 345      | GARAAT | ARAGCARARCTO   | STOCCARTO  | CANTITIGGGTGTTTCATTOGCGGTTTGCAAG                          | 404  |
| Query 361      | GCTOST | SCAGTOCATARAS  | GTATGCCGT  | TGTATAAGTATATAGCAGAATTGGCTGGTACC                          | 420  |
| Sbjet 405      | GCTGGT | GCAGTGCATAAAG  | GTATOCCGT  | TGTATAAGTATATAGCAGAATTGGCTGGTACC                          | 464  |
| Query 421      | AAACAG | ATTGTTCTGCCAG  | TTCCTGCTA  | TGAATGTTATCAACGGTGGTTCTCATGCTGGT                          | 480  |
| Sbjet 465      | ARACAG | ATTGTTCTGCCAG  | TTCCTGCTA  | TGAATGTTATCAACGGTGGTTCTCATGCTGGT                          | 524  |
| Query 481      | AATAAA | CTOSCAATSCASS  | AATTTATGA  | TCATGCCTATTGGAGCTAGTTCATTCAGTGAA                          | 540  |
| Sbjet 525      | AATAAA | CTOSCAATGCAG   | AATTTATGA  | TCATGCCTATTGGAGCTAGTTCATTCAGTGAA                          | 484  |
| Query 541      | GCAATG | COCATOOSTTCTO  | AAATTTACC  | ATTACTTGAAGGCAGAAATCAAAAAACGATAC                          | 600  |
| Sbjet 585      | GCAATG | COCATGOGTICTO  | AAATTTACC  | ATTACTTGAAGGCAGAAATCAAAAAACGATAC                          | 644  |
| Query 601      | GGTCTC | GATGCAACAGCAG  | TOCOTOATO  | AAGGTGGTTTCGCTCCTAATATTCAGGATAAC                          | 660  |
| Sbjet 645      | GETETE | GATGCAACAGCAG  | TECETEATE  | AAGGTGGTTTCGCTCCTAATATTCAGGATAAC                          | 704  |
| Query 661      | AGOGAA | GETETTGATTTET  | TGAATACAG  | CARTTOCARCAGCTOGATACACOGGARARGTA                          | 720  |
| Sbjet 705      | AGGGAA | GGTCTTGATTTGT  | TGANTACAG  | CARTTGCARCRGCTGGATACACGGGAAAAGTA                          | 764  |
| Query 721      | GCAATT | CTATOGATTOTO   | COGCATCAG  | AATATTATATGGAATCAGCTAAGCTGTACGAT                          | 780  |
| Sbjet 765      | GCAATT | GCTATGGATTGTG  | CCGCATCAG  | ALLILLILLILLILLILLILLILLILLILLILLILLILLI                  | 824  |
| Query 781      | TTAGAC | TTCAAAAATCCAI  | ACTOGGATA  | AAGCCCAGTGGAAAACTGGTGATCAAATGATG                          | 840  |
| Sbjet 825      | TTAGAC | TTCAAAAATCCAA  | CCTCGGATA  | AAGCCCAGTGGARAACTGGTGATCAAATGATG                          | 884  |
| Ouery 841      | GAAATC | TATCAATCCTTCA  | TTANGGAAT  | ATCCAGTTGTATCGATTGAGGATTGGTTTGAC                          | 900  |
| Sbict 885      | GARATC | TATCAATCCTTC   | TTANGGANT  | ATCCAGTTGTATCGATTGAGGATTGGTTTGAC                          | 944  |
| 0.0.0          | CACCAT | CACTOOCAAAATT  |            | CATTORCEANTSCOCATATECANATTOTOCC                           | 960  |
| Sbict 945      | CAGGAT | GACTOGGAAAATT  | GGACCARAG  | CATTGGCTAATACGCATATTCAAATTGTTGGC                          | 1004 |
| One 961        | GATGAC | TTANCTOTTACCE  | ATCOTASCA  | CARTING TATOOCTOCTOLOGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA | 1020 |
| Sbjet 1005     | GATGAC | TTAACTGTTACG   | ATCCTARGA  | GAATTGCTATGGCTGCTGAGAAGAAAGCTTGC                          | 1064 |
| Query 1021     | AACTGO | CTGTTACTCAAGO  | TTAATCAAA  | TTOGETCAGTGACTGAATCAATTGATGCGGGCT                         | 1080 |
| Sbjet 1065     | AACTGO | CTGTTACTCAAG   | TTAATCAAA  | TTGGCTCAGTGACTGAATCAATTGATGCGGCT                          | 1124 |
| Query 1081     | AACTTA | GCACGTAAAAATG  | CATOCOSTO  | TARTSSTATESCATESTTERSSTGARAESSAR                          | 1140 |
| Sbjet 1125     | AACTTA | GCACGTAAAAATG  | GATGOGGTG  | TRATGGTATCGCATCGTTCAGGTGAAACGGAA                          | 1184 |
| Query 1141     | GATACA | TTTATCGCTGATC  | TOSTOSTIS  | GACTTOCTACCOGACAGATCAAAACTGGAGCA                          | 1200 |
| Sbjet 1185     | GATACA | TTTATOGCTGATO  | TCGTCGTTG  | GACTTGCTACCOGACAGATCARAACTGGAGCA                          | 1244 |
| Query 1201     | CCATGT | COTTOGGAGOGTO  | TOGCCARAT  | ACAATCAGATACTTCGTATTGAAGAAGAACTT                          | 1260 |
| Sbjet 1245     | CCATGT | CGTTCGGAGCGTC  | TCGCCARAT  | ACAATCAGATACTTCGTATTGAAGAAGAACTT                          | 1304 |
| Query 1261     | GGATCA | OCTOCCATTTACO  | CTOGTCAAA  | AGTTOOGRAATCOTCARGCATAG 1311                              |      |
| Sbiet 1305     | GGATCA | GCTGCCATTTACG  | CTGGTCAAA  | AGTTCCGARATCCTCARGCATAG 1355                              |      |

Fig 3. Sequence alignment showing homology between query sequence with 5 moley/partial sequence (gi001596246.1)



Fig.4. Dendrogram showing the relatedness between *Brugia malayi* enolase and other filarial sequence derived from Genbank database.

## Conclusion

In the present study, isolation, amplification and sequence analysis of the gene encoding enolase from lymphatic filarial parasite, B. malayi have been accomplished. Our study forms the first report on the amplification of the complete coding sequence of enolase from infective stage B. malayi and the results will enhance the understanding of enolase in the filarial parasite and lead to the designing and development of new chemotherapeutic tools. Parasites living in their mammalian host are entirely dependent on glucose, abundantly available in the blood. Metabolic studies performed on bloodstream-form parasites have shown that glycolysis represents the only process through which ATP is synthesized by the parasite. Inhibition of glycolysis, therefore, leads to rapid death of these parasites (Engel et al., 1987). Glycolytic enzymes play an important role in parasites for energy production and other physiological functions and hence termed as important therapeutic targets (Vivas et al., 2005). Enolase (2-phospho-Dglycerate hydrolase) is a ubiquitous dimeric glycolytic enzyme that catalyzes the dehydration of 2-phophoglycerate (2-PGE) to phosphoenolpyruvate (PEP) (Lebioda et al., 1989), an important metabolic intermediate. Enolase has been characterized in detail as a plasminogen receptor in different pathogens-bacteria (Bergmann et al., 2001; Jones and Holt, 2007), fungi (Jong et al., 2003) and protozoa (Vanegas et al, 2007) and it has been found in Onchocerca volvulus tissues (Jolodar et al., 2003), and in Fasciola hepatica and Echinostoma caproni secretions (Bernal et al., 2004). Therefore, enolase is an important protein in the energy metabolism and development of filarial nematodes, but relatively very few studies of this molecule in filarial nematodes have been reported. Further knowledge on the molecular and functional characterization of this enzyme BmEno and its pathogenic mechanisms are very essential, as it not only helps to understand parasite's evolution but also leads to design new potential therapeutic molecules.

#### Acknowledgement

The authors wish to thank the Director, Vector Control research Center, Pondicherry for providing the necessary facilities for carrying out the work.

## REFERENCES

- Bergmann, S., Rohde, M., Chharwal, G. S., Hammerschmidt, S., 2001. Alpha-enolase of *Streptococcus pneumonia* is a plasminogen-binding protein displayed on the bacterial cell surface. *Mol. Microbiol.* 40:1273-1287. 10.1046/1046/j. 1365-2958.2001.02448.
- Bernal, D., de la Rubia, J. E., Carrasco-Abad, A. M, Toledo, R., Mas-Coma, S., 2004. Identification of enolase as a plasminogen-binding protein in excretory-secretory products of Fasciola hepatica. *FEBS Lett.* 563 (1–3): 203– 206.
- Chhatwal, G. S., Preissner K. T. Extracellular matrix interactions with gram-positive pathogens. *In*: Fischetti V. A, Novick R. P, Ferretti J, Portnoy D. A, Rood J. I, editors. Gram-positive pathogens. Washington, D. C: ASM Press; 2000. pp. 78–86.
- Engel, J. C., Cazzulo, B. M. F., Stoppani, A. O. M., Cannata, J. J. B., Cazzulo J. J. 1987. Aerobic glucose fermentation by Trypanosoma cruzi axenic culture amastigote-like forms during growth and differentiation to epimastigotes. *Mol. Biochem. Parasitol.*, 26: 1-10.
- Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. *Evolution*, 39:783-791.
- Goodstadt, L. and Ponting, C. P. 2001. CHROMA: consensusbased colouring of multiple alignments for publication. *Bioinformatics*, 17: 845-846.
- Jefferry, C. J., 2009. Moonlighting proteins-an update, *Mol. BioSyst.*, 5: 345-350.
- Jolodar, A., Fisher, P., Bergmann, S., Buttner, D. W., Hammerschmidt, S., Brattig, N. W., 2003. Molecular cloning of an alpha-enolase from the human filarial parasite *Onchocerca volvulus* that binds human plasminogen *Biochim. Biophys. Acta*, 1627: 111-120.
- Jones, M. N and Holt, R. G. 2007. Cloning and characterization of an  $\alpha$ -enolase of the oral pathogen Streptococcus mutans that binds human plasminogen. Biochem. Biophy. Res. Comm. 364(4): 924–929.
- Jong, A. Y., Chen, S. H., Stins, M. F., Kim, K. S, Tuan. Huang, S. H., 2003. Binding of *Candida albicans* enolase to plasminogen results in enhanced invasion of human

brain microvascular endothelial cells. J. Med. Microbiol. 52, 615-622.

- Kaikai Han., Lixin Xu, Ruofeng Yan, Xiaokai Song, Xiangrui Li., 2012. Molecular cloning, expression and characterization of enolase from adult *Haemonchus contortus. Res. Vet. Sci.* 92: 259-265.
- Lebioda, L., Stec, B., Brewer, J. M., 1989. The structure of yeast enolase at 2.25-A resolution. An 8-fold beta + alphabarrel with a novel beta alpha alpha (beta alpha) 6 topology. *J. Biol. Chem.* 264: 3685-3693.
- Lim PKC., Sim B. K. L., 1983., Laboratory techniques in filariasis, *In* JW Mak, Filariasis Bull No. 19, Institute for Medical Research, Malaysis, p. 95-108.
- Marcilla. A., Perez-Garcia., A., Espert, A., Bernal, D., Mu noz-Antoli C., Esteban, J. G., Toledo, R., 2007. *Echinostoma caproni:* identification of enolase in excretory/secretory products, molecular cloning, and functional expression. *Exp. Parasitol.* 117: 57-64.
- Michael, E., Bundy, D. A., Grenfell, B. T. 1996. Re-assessing the global prevalence and distribution of lymphatic filariasis. *Parasitology*, 112: 409-428.
- Mundodi, V., Kucknoor, A. S., Alderete, J. F., 2008. Immunogenic and plasminogen-binding surface-associated alpha-enolase of *Trichomonas vaginalis*. *Infect. Immu.* 76: 523-531.
- Pancholi, V. 2001. Multifunctional alpha-enolase: its role in diseases. *Cell Mol. Life Sci.* 58: 902-920.

- Saitou, N and Nei, M., 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. *Mol. Biol. Evol.* 4: 406-425.
- Tamura, K., Dudley, J., Nei, M., and Kumar, S., 2007. MEGA4: Molecular evolutionay genetics Analysis (MEGA) software version 4.0. *Mol. Biol. Evol.* 24: 1596-1599. Doi:1093/molbev/msm092.
- Vanegans, G., Quinones, V., Carraco-lopez, C., Conecepcion, J. L., Albericio F., Avilan, L., 2007. Enolase as a plasminogen binding protein in *Leishmania Mexicana*. *Parasitol. Res.* 101: 1511-1516.
- Vivas L, Easton A, Kendrick H, Cameron A, Lavandera J. L, Barros D, Brady R. L, Croft S. L., 2005. *Plasmodium falciparum*: stage specific effects of a selective inhibitor of lactate dehydrogenase. *Exp Parasitol*. 111: 105–114
- World health organization. 1997b. World health report 1997. Report of the Director General. Geneva, WHO.
- World health organization. 2012. World health report 2012. Report of the Director General. Geneva, WHO.
- Zuckerkandl, E. and Pauling, L. 1965. Evolutionary divergence and convergence in proteins, pp. 97-166 in Evolving Genes and Proteins, edited by V. Bryson and H.J. Vogel. Academic Press, New York.

\*\*\*\*\*\*