
 

 
 

 

       
 

 
                                                 

 

REVIEW OF SOFTWARE QUALITY METRIC USED IN TODAY’S MARKET

*Poonam Bhagwandas Godhwani and Anita Natubhai Gianchandani

Department of Computer Science 
  

ARTICLE INFO                                          ABSTRACT
 

 

The major focus in this technological era is on software development and the factors used in 
measuring the software quality, different types of the metric used in the current market to 
software quality of their proposed system. It also discusses the issues in which users are concerned to 
the software quality of the product or system.
 
 
 
 
 
 
 

 
Copyright©2016 Poonam Bhagwandas Godhwani and Anita Natubhai Gianchandani
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 
 
 
 

 

INTRODUCTION 
 
Software Quality measures how well software is designed 
(quality of design) and how well software conforms to that 
design (quality of conformance) (Jones, 1994
design is concerned with the implementation and quality of 
conformance refers to validity of design and its requirement
(Daskalantonakis, 1992). Software quality may be defined as 
conformance to explicitly state functional and performance 
requirements, explicitly documented developed standards and 
implicit characteristics that are expected of all professionally 
developed software. 
 

Above definition emphasis three points: 
 

 Software requirements are the foundations from 
quality is measured. Lack of conformance to requirement is 
lack of quality/ 

 Specified standards define set of development criteria that 
guide the software engineer. If criteria are not followed, 
lack of quality will almost result. 

 A set of implicit requirements often goes unmentioned like 
ease of use, maintainability, etc. If software conforms to 
explicit requirements but fails to meet implicit 
requirements, software quality is suspected.

 
*Corresponding author: Poonam Bhagwandas Godhwani,
Department of Computer Science and Technology, 
UTU-Bardoli (Gujarat), India. 

ISSN: 0975-833X 

 

Article History: 
 

Received 18th February, 2016 
Received in revised form  
24th March, 2016 
Accepted 10th April, 2016 
Published online 30th May, 2016 
 
Key words: 
 

LOC-Line of Code, PUM-Per User Month,  
MTTF-Mean Time to Failure,  OFE-
opportunities for error,  LOP-life of the product  

Citation: Poonam Bhagwandas Godhwani and Anita Natubhai Gianchandani
International Journal of Current Research, 8, (05), 31565
 

 

                                                  

 
REVIEW ARTICLE 

 

REVIEW OF SOFTWARE QUALITY METRIC USED IN TODAY’S MARKET
 

Poonam Bhagwandas Godhwani and Anita Natubhai Gianchandani
 

Department of Computer Science and Technology, UTU-Bardoli (Gujarat), India
 
    

ABSTRACT 

The major focus in this technological era is on software development and the factors used in 
measuring the software quality, different types of the metric used in the current market to 
software quality of their proposed system. It also discusses the issues in which users are concerned to 
the software quality of the product or system. 

Poonam Bhagwandas Godhwani and Anita Natubhai Gianchandani. This is an open access article distributed under the Creative Commons 
use, distribution, and reproduction in any medium, provided the original work is properly cited.

Software Quality measures how well software is designed 
(quality of design) and how well software conforms to that 

, 1994). Quality of 
design is concerned with the implementation and quality of 
conformance refers to validity of design and its requirement 

Software quality may be defined as 
ional and performance 

requirements, explicitly documented developed standards and 
implicit characteristics that are expected of all professionally 

Software requirements are the foundations from which 
quality is measured. Lack of conformance to requirement is 

Specified standards define set of development criteria that 
guide the software engineer. If criteria are not followed, 

equirements often goes unmentioned like 
ease of use, maintainability, etc. If software conforms to 
explicit requirements but fails to meet implicit 
requirements, software quality is suspected. 

Poonam Bhagwandas Godhwani, 
Department of Computer Science and Technology,  

 
Steve McConnell’s Code Complete says software possesses 
internal and external quality characteristics. External quality 
characteristics are those characteristics that face the 
internal quality characteristics are those characteristics that do 
not face the user (Myers, 1979
product’s quality is a function of how much it changes the 
world for better (DeMarco, 1999).
 

Important quality factors 
 

Quality factors which are important are as follows:
 

Understandability: Purpose should be clarified very well, i.e., 
design and user documentation must be written clearly and 
properly so that it is easily understandable. In other words, user 
context must be taken into consideration. For example, if 
software engineer is going to use the software, it is not 
mandatory that layman should understand it.
 
Completeness: All parts must be present and fully developed. 
So if the code calls subroutine from external libra
package must provide reference to that library with all the 
required parameters and input data.
 
Conciseness: Excessive or redundant information or 
processing should be minimized especially when memory 
capacity is limited. This can be improved
lines of code into subroutine or function which achieve that 
functionality, in case of documents also.

 Available online at http://www.journalcra.com 

International Journal of Current Research 
Vol. 8, Issue, 05, pp.31565-31569, May, 2016 

 

 INTERNATIONAL 
    

Poonam Bhagwandas Godhwani and Anita Natubhai Gianchandani, 2016. “Review of software quality metric used in today’s market
31565-31569. 

 z 

REVIEW OF SOFTWARE QUALITY METRIC USED IN TODAY’S MARKET 

Poonam Bhagwandas Godhwani and Anita Natubhai Gianchandani 

Bardoli (Gujarat), India 

 
 
 

The major focus in this technological era is on software development and the factors used in 
measuring the software quality, different types of the metric used in the current market to measure the 
software quality of their proposed system. It also discusses the issues in which users are concerned to 

is an open access article distributed under the Creative Commons 
use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

Steve McConnell’s Code Complete says software possesses 
internal and external quality characteristics. External quality 
characteristics are those characteristics that face the user while 
internal quality characteristics are those characteristics that do 

, 1979). Dr. Tom DeMarco says 
product’s quality is a function of how much it changes the 

, 1999). 

lity factors which are important are as follows: 

Purpose should be clarified very well, i.e., 
design and user documentation must be written clearly and 
properly so that it is easily understandable. In other words, user 

aken into consideration. For example, if 
software engineer is going to use the software, it is not 
mandatory that layman should understand it. 

All parts must be present and fully developed. 
So if the code calls subroutine from external library, software 
package must provide reference to that library with all the 
required parameters and input data. 

Excessive or redundant information or 
processing should be minimized especially when memory 
capacity is limited. This can be improved by placing repeated 
lines of code into subroutine or function which achieve that 
functionality, in case of documents also. 

 

INTERNATIONAL JOURNAL  
    OF CURRENT RESEARCH  

Review of software quality metric used in today’s market”, 



Portability 
 
Portability refers to the proper execution of software with 
easiness with multiple computer configurations. This is 
applicable to both the hardware and operating system. 
 

Consistency 
 
Consistency refers to uniformity in notation, symbology, 
appearance and terminology. 
 

Maintainability 
 
Software product should be well maintained, that is, it should 
be well-documented with less complexity and should provides 
spare capacity for memory, storage and processor utilization 
and other resources. 
 

Testability 
 
If product is to be easily tested, disposition to support 
acceptance criteria and evaluation of performance feature 
should be included during design phase. Complex design leads 
to poor testability. 
 

Usability 
 
Usability refers to software product should be convenient and 
practical to use. Common example to this is Human-Computer 
Interface (HCI) 
 

Reliability 
 
Reliability refers to intended functions should do expected 
functionality within specific period of time and environmental 
conditions such as robustness. 
 
Efficiency 
 
Efficiency refers to fulfillment of purpose without waste of 
resources such as memory, space and processor utilization, 
network bandwidth, etc. 
 
Security 
 
Security refers to ability to protect data from unauthorized data 
and malicious or inadvertent interference with its operations 
through mechanisms like authentication, access control and 
encryption. Security also refers to resilience in the face of 
malicious, intelligent and adaptive attackers. 
 

Integrity 
 

Integrity refers to measurement of system’s ability to stand 
against attacks with security. 
Thus, software quality metric includes matrix to measure 
above stated quality factors needed to develop software 
properly. 
 
Software Metric 
 
Common software metric includes following things: (Jones, 
1992) 

 Bugs per line of code 
 Code Coverage 
 Cohesion 
 Coupling 
 Cyclomatic Complexity 
 Function Point Analysis 
 Number of Classes and Interfaces 
 Number of line of Customer Requirements 
 Order of Growth 
 Source lines of Code 
 Robert Cecil Martin’s Software Package  Metric 
 
Software metric can be classified into following three 
categories: 
 
 
 Product Metric – This metric describes the characteristics 

of the product such as size, complexity, design features, 
performance and quality test. 

 Process Metric – This metric is used to improve software 
development and maintenance such as pattern testing, 
defect arrival, response time of the fix process and 
effectiveness of the defect removal during development. 

 Project Metric – This metric describes the characteristics 
and execution of the software such as life cycle of the 
software, cost, schedule, productivity, etc. 

 
Software quality metric is the subset of the metric that focuses 
on the quality aspect of the software, that is, product, process 
and project metric. Software quality can be again divided into 
end-product quality and in-process quality metrics. 
 
Product Quality Metrics 
 
Definition of software quality contains both intrinsic product 
quality and customer satisfaction. Following are the metrics 
available for these both quality: 
 
Intrinsic product quality is measured by the number of bugs 
(functional defect) and how long software can run without 
encountering crash. Defect Density Rate and Mean Time to 
Failure (MTTF) are the metrics used for intrinsic product 
quality. MTTF metric is useful for safety-critical systems such 
as airline traffic control system, avionics, and weapons. Defect 
Density metric is used in many commercial systems. 
 
Defect Density Metric 
 
Defect rate is the number of defects over the opportunities for 
error (OFE) during specific time frame. Denominator is the 
size of the software which is usually thousand lines of code 
(KLOC) or in the number of function points (DeMarco, 1999; 
Jones, 1992) Time frame is expressed as life of the product 
(LOP) ranging from one year to many years after the software 
product’s release to the general market. For counting KLOC, 
Line of Code (LOC) metric is used. In assembly programming, 
one physical line was same as one instruction but with the 
availability of high level languages there was difference 
between physical lines and instruction statements i.e. physical 

 31566            Poonam Bhagwandas Godhwani and Anita Natubhai Gianchandani, Review of software quality metric used in today’s market 
 



and logical lines. Certain variation which leads to this 
difference is as follows: 
 
 Count only executable lines. 
 Count executable lines plus data definitions. 
 Count executable lines, data definitions, and comments. 
 Count executable lines, data definitions, comments and job 

control language. 
 Count lines as physical lines on an input screen. 
 Count lines as terminated by delimiters. 
 
In Boehm’s book of Software Engineering Economics (1981), 
LOC counting method counts lines as physical lines and 
includes executable lines, data definitions and comments. In 
Software Engineering Metrics and Models by Conte et al 
(1986), LOC is defined as any line of program text that is not 
comment or blank line but the number of statements or 
fragments of statements in the line. This line includes all line 
containing program headers, declarations, and executable and 
non –executable statements. Efficient design provides the 
functionality with lower implementation effort and fewer 
LOCs. Therefore using LOC data to measure software 
productivity is like using the weight of an airplane to measure 
its speed and capacity (Jones, 1992). LOC data do not reflect 
non-coding work such as the creation of requirements, 
specifications, and user manuals. Defect density metric 
measures code quality per unit. But from customer’s point of 
view, defect rate is not as relevant as the total number of 
defects that might affect their business. Therefore, a good 
defect rate should reduces the total number of defects from 
release-to-release i.e. if new release is larger than its 
predecessors, it means that defect rate for the new and changed 
code has to be significantly better than that of the previous 
release in order to reduce the total number of defects. 
 
Function Point 
 
Conte et al. (1986) defined function as collection of executable 
statements that performs certain task, together with 
declarations of the formal parameters and local variables 
manipulated by those statements (Jones, 1992; Jones,, 2000). 
The ultimate measure for software productivity is the number 
of functions a development team can produce given a certain 
amount of resources, regardless of the size of the software in 
the lines of code. The defect rate is indexed to the number of 
functions software provides. If defects per unit of functions are 
low, the software should have better quality even though the 
defects per KLOC value could be higher when the functions 
were implemented by fewer lines of code. Function Point 
metric is weighted total of five major component s that 
comprises an application: 
 
 Number of external inputs (transaction types) 
 Number of external outputs (report types) 
 Number of logical internal files (file as user conceives and 

not the physical files) 
 Number of external interface files (files accessed by the 

application and not maintained by it) 
 Number of external inquiries (types of online inquiries 

supported) 
 

Kemerer and Porter (1992) and Sprouls (1990) define low and 
high weighing factors depending on the complexity of the 
application in terms of above five components as follows: 
 
 External Input – low complexity: 3, high complexity: 6 
 External Output – low complexity: 4, high complexity: 7 
 Logical Internal File – low complexity: 7, high complexity: 

15 
 External Interface File – low complexity: 5, high 

complexity: 10 
 External Inquiry – low complexity: 3, high complexity: 6 
 
In application contract work, the function point is used to 
measure the amount of work and quality is expressed as 
defects per function point whereas in system and real-time 
software, function point is used to measure the amount of work 
and quality as defects per function point but only in 
information system and not any other systems (Jones, 2000). 
This is due to inertia of the LOC related practices and the 
effort required for function point counting. Function point 
counting can be more time-consuming and expensive as 
compared to LOC based data as it involves studies involving 
multiple languages and those for productivity evaluation. 
 
Customer Problems Metric  
 
Major developers in the software industry measure the 
problems customer’s encounters when using the product 
(Stevens and Myers, 1974). Defect density metric measures all 
the valid defects but from customer’s perspective not only the 
valid defects but the problems that terminates the execution of 
the software like usability problem, unclear documentation or 
information, duplicates of valid effects or even user errors 
which is commonly known as non-defect oriented problems 
are the problems with the software. Problem metric is usually 
expressed as problems per user month (PUM) = Total 
problems that customer reported (true defects and non-defect 
oriented problems) for a time period. Time period may be total 
number of license months of the software during the period 
where number of license months = number of install licenses 
of the software i.e. number of months in calculation period. 
PUM is calculated for each month after software has been 
released to the market and also for monthly averages by year. 
This metric is related to problems to usage. This metric can be 
treated as intermediate between defects measurement and 
customer satisfaction. To reduce customer problems, one has 
to reduce the functional defects in the product and improve 
other factors like usability, documentation, problem 
rediscovery, etc.  To improve customer satisfaction, one has to 
reduce defects and overall problems and manage factors of 
broader scope such as timing and availability of the product, 
company image, services, total customer solutions, and so 
forth. 
 
Customer Satisfaction Metric 
 
Following five point scales is used to determine the 
satisfaction level of the customer: 
 
 Very satisfied 
 Satisfied 

 31567                                  International Journal of Current Research, Vol. 08, Issue, 05, pp.31565-31569, May, 2016 
 



 Neutral 
 Dissatisfied 
 Very dissatisfied 
 
Customer satisfaction in software monitored by IBM includes 
CUPRIMDSO categories (capability, functionality, usability, 
performance, reliability, install ability, maintainability, and 
documentation/information, service and overall). Based on 
five-point scale analysis, several metrics with slight variations 
can be constructed and used depending on the purpose of 
analysis. For example, 
 

 Percent of completely satisfied customers 
 Percent of satisfied and completely satisfied customers 
 Percent of dissatisfied and completely dissatisfied 

customers 
 Percent of neutral, dissatisfied and completely dissatisfied 

customers 
 

Usually percent satisfaction is used. Reduction of percent of 
non-satisfaction leads to reducing product defects. The 
weighted index approach is used. Some companies uses net 
satisfaction index (NSI) to facilitate comparisons across 
product. NSI has following weighting factors: 
 

 Completely satisfied: 100% 
 Satisfied: 75% 
 Neutral: 50% 
 Dissatisfied: 25% 
 Completely dissatisfied: 0% 
 
But this weighting factor may mask the satisfaction profile of 
one’s customer set.  For example, if half of the customers are 
completely satisfied and half are neutral, NSI value is 75% 
which is equivalent to the scenario when all customers are 
satisfied. 
 

Cyclomatic complexity  
 
Cyclomatic complexity is software metric developed by 
Thomas J. McCabe, Sr. in 1976 and is used to indicate the 
complexity of the program. It directly measures the number of 
linearly independent paths through a program’s source code. 
Cyclomatic complexity is computed using control flow graph 
of the program. The nodes of the graph correspond to 
indivisible groups of command of program and directed edge 
connects two nodes (Stevens and Myers, 1974; Jones, Capers, 
2009). Cyclomatic complexity may also be applied to 
individual functions, modules, methods or classes within the 
program. Strategy is to use Basis Path Testing which tests for 
each linear independent path through the program where 
number of test cases will equal the cyclomatic complexity of 
the program (Jones, 2000). Complexity is defined as M=E – N 
+ 2P where M=Cyclomatic complexity, E = Number of edges 
of the graph, N = Number of nodes of the graph, P = Number 
of connected components (Stevens and Myers, 1974). 
 
Cohesion  
 

One thinks that module with higher complexity tends to have 
lower cohesion than a module with lower complexity. 
Cohesion is a measure of how strongly related is the 

functionality expressed by the source code of software module. 
Cohesion is an ordinal type of measurement which can be 
expressed as high cohesion or low cohesion. Modules with 
high cohesion tend to be preferable because high cohesion is 
associated with several desirable traits of software including 
robustness, reliability, reusability, and understandability 
whereas low cohesion is associated with undesirable traits such 
as being difficult to maintain, difficult to test, difficult to reuse, 
and even difficult to understand. Cohesion and Coupling were 
invented by Larry Constantine (Jones, Capers, 2009) based on 
the characteristics of good programming practices that reduced 
maintenance and modification costs. If the methods that serve 
the given class tend to be similar in many aspects, the class is 
said to have high cohesion. In highly cohesive system, code 
readability and likelihood of reuse is increased, while 
complexity is kept manageable. Cohesion is decreased if the 
functionalities embedded in the class accessed through its 
methods have little in common and methods carry out many 
varied activities often using coarsely-grained or unrelated sets 
of data. Cohesion can be any of the following: 
 

 Coincidental Cohesion (worst) 
 Logical Cohesion 
 Temporal Cohesion 
 Procedural Cohesion 
 Communicational Cohesion 
 Sequential Cohesion 
 Functional Cohesion (best) 
 
Coupling  
 

Coupling or Dependency is the degree to which each program 
module relies on each of the other modules. Module Coupling 
can be described as follows: For data and control flow 
coupling: 
 

 di – number of input data parameters 
 ci – number of input control parameters 
 d0 – number of output data parameters 
 c0 – number of output control parameters 
 

For global coupling: 
 

 gd – number of global variables used as data 
 gc – number of global variables used as control 
 

For environmental coupling: 
 

 w – number of modules called (fan-out) 
 r – number of modules calling the module under 

consideration (fan-in) 
 

Coupling can be any of the following: 
 

 Content Coupling (high) 
 Common Coupling 
 External Coupling 
 Control Coupling 
 Stamp Coupling (Data-structured Coupling) 
 Data Coupling 
 Message Coupling (low) 
 No Coupling 

 31568            Poonam Bhagwandas Godhwani and Anita Natubhai Gianchandani, Review of software quality metric used in today’s market 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CASE STUDY 
 
Scalability Overview of Windows Server 2008 Terminal 
Services Gateway 
 
Terminal Services Gateway (TS Gateway) is server role in 
Windows Server 2008. It enables authorized users to connect 
to Remote Desktop Protocol (RDP) accessible resources on 
internal corporate networks from any Internet-connected 
device that can run the Remote Desktop Connection (RDC) 
client. Metric that they haves used is the response time to 
calculate the performance of TS Gateway. Response time is the 
time taken for data packet to travel from the Terminal Services 
client through TS Gateway to the Terminal Server and back to 
Terminal Services client. Based on these data, they have 
developed Knowledge worker scenario. These metrics were 
used to average typical knowledge workers usage in Terminal 
Services which includes MS Office application usage. 
Scenarios developed using these data are as follows: 
 
 Knowledge worker data rate 
 Number of Processors Variation Test 
 Amount of Physical Memory (RAM) Variation Test 
 Frequency Variation Test 
 Packet Size Variation Test 
 Central vs. Local Network Policy Server (NPS) 
 TS Gateway Server Farm Test 
 
Conclusion 
 

Several components are crucial while measuring the quality of 
software using various metric. The response time of the  
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
product can be considered as one of the software quality metric 
by studying the case study. Here major focus is on to 
determine that in which circumstances which metrics should be 
used. 
 

REFERENCES 
 
Daskalantonakis, M. K. 1992. “A Practical View of Software 

Measurement and Implementation Experiences Within 
Motorola,” IEEE Transactions on Software Engineering, 
Vol. SE-18, pp. 998-1010 

DeMarco, T. 1999. Management Can Make Quality 
(Im)possible, Cutter IT Summit, Boston. 

Jones, C. 1992. “Critical Problems in Software Measurement,” 
Burlington, Mass.: Software Productivity Research. 

Jones, C. 1994. Assessment and Control of Software Risks, 
Englewood Cliffs, N. J.: Yourdon Press. 

Jones, C. 2000. Software Assessments, Benchmarks, and Best 
Practices, Boston: Addison-Wesley. 

Jones, Capers, 2009. A Short History of Lines-of-Code 
Metrics; Capers Jones & Associates LLC; Narragansett, RI; 
September, 20 page 

Myers, G. J. 1979. The Art of Software Testing, New York: 
John Wiley & Sons. 

W. Stevens, G. Myers, L. 1974. Constantine, "Structured 
Design", IBM Systems Journal, 13 (2), 115-139. 

 

******* 

Below table discusses different metrics used for different purpose: 
 

Measure  Metrics 

1.Customer satisfaction 
index  

Number of system enhancement requests per year Number of maintenance fix requests per year User friendliness: call 
volume to customer service hotline User friendliness: training time per new user Number of product recalls or fix 
releases (software vendors) Number of production re-runs (in-house information systems groups)  

2.Delivered defect quantities  Normalized per function point (or per LOC) At product delivery (first 3 months or first year of operation) Ongoing (per 
year of operation) By level of severity By category or cause, e.g.: requirements defect, design defect, code defect, 
documentation/on-line help defect, defect introduced by fixes, etc.  

3.Responsiveness 
(turnaround time) to users  

Turnaround time for defect fixes, by level of severity Time for minor vs. major enhancements; actual vs. planned 
elapsed time (by customers) in the first year after product delivery  

7.Complexity of delivered 
product  

McCabe's cyclomatic complexity counts across the system Halstead’s measure Card's design complexity measures 
Predicted defects and maintenance costs, based on complexity measures  

8. Test coverage  Breadth of functional coverage Percentage of paths, branches or conditions that were actually tested Percentage by 
criticality level: perceived level of risk of paths The ratio of the number of detected faults to the number of predicted 
faults.  

9. Cost of defects  Business losses per defect that occurs during operation Business interruption costs; costs of work-around Lost sales and 
lost goodwill Litigation costs resulting from defects Annual maintenance cost (per function point) Annual operating cost 
(per function point) Measurable damage to your boss's career  

10. Costs of quality activities  Costs of reviews, inspections and preventive measures Costs of test planning and preparation Costs of test execution, 
defect tracking, version and change control Costs of diagnostics, debugging and fixing Costs of tools and tool support 
Costs of tools and tool support Costs of test case library maintenance Costs of testing & QA education associated with 
the product Costs of monitoring and oversight by the QA organization (if separate from the development and test 
organizations)  

11. Re-work  Re-work effort (hours, as a percentage of the original coding hours) Re-worked LOC (source lines of code, as a 
percentage of the total delivered LOC) Re-worked software components (as a percentage of the total delivered 
components)  

12. Reliability  Availability (percentage of time a system is available, versus the time the system is needed to be available) Mean time 
between failure (MTBF) Mean time to repair (MTTR) Reliability ratio (MTBF / MTTR) Number of product recalls or 
fix releases Number of production re-runs as a ratio of production runs  

 

 31569                                  International Journal of Current Research, Vol. 08, Issue, 05, pp.31565-31569, May, 2016 
 


