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1. INTRODUCTION

The power function distribution is used as a lifetime distribution model for certain sets of failure data to check the reliability of
electrical component Meniconi (1995) used power function distribution over the other life time models like exponential,
lognormal, Weibull and showed that power function distribution performs well in reliability and hazard function studies. Statistical
properties of Power function distribution are studied by Johnson and Kotz (1970). Moments of order statistics for a Power function
distribution were calculated by Malik (1967). Ahsanullah (1974, 1989) has considered estimation of the parameters of a Power
function distribution by linear functions of order statistics and by record values. Kapadia (1978) discussed the sample size required
to estimate parameter of the power function distribution. Zaka et al. (2013, 2014) have used different estimation methods for the
parameters of the Power function distribution. In life-testing experiments usually two basic censoring schemes are used viz., (i)
Type-I censoring and (ii) Type-II censoring. In Type-I censoring scheme the life test is terminated as soon as the predetermined
time for the test is observed. When cost of the test heavily increases with time of the experiment such censoring scheme is used.
While in type-II censoring scheme the life test is terminated as soon as predetermined number of failures are observed. Such
censoring schemes are used for testing of very costly items. In life testing experiment now a days Bayesian estimation approach is
widely used by the statisticians. Saleem et al. (2010) considered the Bayesian analysis of the mixture of power function
distributions based on complete and censored sample, Munawar and Farooq (2012) have considered Bayesian parameter
estimation for Power function distribution. Zarrin et al. (2013) have used Bayes estimation for shape parameter of generalized
power function distribution. But they have used a single prior distribution for estimation of the parameters. Sometimes we may
have different information’s about the unknown parameter of the given life time model. In such situation it is more beneficial to
include such different information’s in the Bayesian setup. Haq and Aslam (2009) have considered double prior selection for the
parameter of Poisson distribution for evaluation of posterior variance, posterior predictive variance and posterior predictive
probabilities. Patel and Patel (2015 (a, b)) have considered double prior distributions for estimating the parameter and other
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reliability characteristics in case of Rayleigh and Exponential life time models. In this paper the following three different double
priors are used and the results based on them are compared with the results based on single prior distribution.

(i) Gamma-Jeffery (non-informative for ¢ =1) double prior
(i) Gamma-non-informative double prior (for ¢ = 2)

(iii) Gamma-non-informative double prior (for ¢ = 3)

(iv) Gamma prior

The posterior distribution of parameter 6 under different type of prior distributions is developed in Section 2. Bayes estimate of 6
and reliability at time tare derived in Section 3. Section 4 covers Bayes predictive estimation and construction of equal tail
credible interval for future observation. In Section 5, Bayes predictive estimation for the remaining (n 1) ordered failure time
truncated at x(,) is considered along with their equal tail credible interval. A simulation study is carried out to compare the

performance of the estimators under different double priors. The estimation is done based on the type-II censored sample from the
power function distribution.

The probability density function (pdf) of the power function distribution is given by,

fx,0)=0x Y 0<x<1 6=0. (1D

Its Cumulative distribution function (cdf) is,

F(x,0) = xf (12
The reliability function at time t is

Rg)=1—-t%0<t =<1, 60 )|

2. The posterior distribution of 8 under different prior distributions

Let n items are placed on a life test and the test is terminated after the rt" failure, 1 < r < n; r is predetermined fixed integer.
Consider X, ) X2y X(3)r wer X(i)s -+ » X(r) ArE the r ordered observed failure times. During the test failure are not replaced and the
test is continued with the remaining items of the test, such censoring scheme is called Type-II censoring without replacement. The
likelihood function under such censoring scheme is given by

1 8)« | [ (o 0) 11 - Flxen )"

Using (1.1.) and (1.2), it reduces to,

T

L=1(x0) e o7 [ [xtr— 8]

i=1

:Z?:g(njr)er ?:%xg)1_x(£1+j) L(—1)) e

2A. General Non-informative and Gamma Priors:

Let us consider the general non-informative prior distribution of 6 is

P;'1[9) = %;

=0 c=0 (2.2)
and the second Prior distribution for 8 is gamma distribution given as,
P,(6) = %8“‘19“’9, #>0a>00b =0. ..(23)
Combining (2.2) and (2.3), the double prior distribution for 8 can be written as,

P,(8) o< P,1(8).P,(8)
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x 99 ¢ 1e7P9. 09 >0,a>0b>0,c>0 . (2.4)

For i = 1, we take ¢ = 1, and we have gamma-Jeffery double prior, given by

P, (6) x 8% e 9>0,a>0,b>0.

For i = 2, we take ¢ = 2, and we have gamma-non-informativedouble prior, given by
P,(0) « 6% 2e7P% ;9 >0,a>0,b>0.

For i = 3, we take ¢ = 3,and we have gamma-non-informativedouble prior, given by
P;(0) « %3P ;9 >0,a>0,b>0.

For i = 4, we have only single gamma prior given by

P (6) x 0% te7® .6 >0,a>0b>0.

2. B The posterior Distribution of @

The posterior Distribution of @for givenx in case of double prior distribution P;(6) can be obtained as,

w,(6/x) o< L(x,8).P,(6)

n—r r—1
_ Z (ﬂ’ _ T) gr l_[ x{ﬂf)—l (_1)}'2::9;:}1'*}')—19 rz+c—1e—bﬂ
j [ [
j=o i=1

fmn—=r -1 ;
— Z{_-l}_.( _ ) HPE(B_QEL’- lﬂgx;i;Efﬂ‘(lh‘}—l}-lﬂgx;r;,Hu+c—1e—bﬁ'
i=0 Jr

— i m— —; —1 =FT_.1 o
= Er(—1) ("7 ) e it g te Timdlosr_(25)

where,
y;=b-— Eizllogxy —(1+ j)logxyand,=r+a—c (2.6)
Hence,
L(x,8)P (8
m,(8/x) = (=0)2.®)

[y L(x,6) P.(6)d8

D e R '

n— n—r] [a;
Ej:':l\ j =5

¥j

3. Bayes estimate of 6 and reliability R(t) at time ¢t

3 A. Bayes estimate of 8 under squared error loss function is given by,

0= E,(0lx)

=f8.?rz-[6'|£].d6'
0

Using (2.7), we get
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5 _Joozyzs () eieoni(-nide

D
where,

0= (") e

on simplifving we get,

ner (nry (=1
- [, + 1) 2= U )}:"‘“

g =
[ex; y-T ‘1—“)( 1)7
j=o0 ; y; 4
_ - [—1 "l.l
==l (G.1)
:ﬁ'— -
byt J|} -

Bayes estimate of reliabilityR (t):
Here R{(t) =P(X >t)=1—F(t)
= {1 - tﬁ'} = P(@)say

Hence the Baves estimate of R{t) is given as

ﬁ(t} = E.‘r[ [fﬂ‘:@}fﬂ

= j wl(8).m;(8/x)de
o

f{i—t‘*}E' () Yifgai-1{—1)J dg
D
T (=0 [T (7 ) emthikeddgai-z g

- »

Here it should bey; > logt or e¥ =t

mn—T, ifm—ry g
Tt _
J{yj-loge)
‘l —

L(3.2)

Tha-0i("77)
Jl.'}.j_ xl-

3B. Baves equal tail credible interval for 8:

Interval [1,;,1,;] is said to be the Bayes equal @il {1 — ¥)100%credible mterval of & if

Iy %
| m(elae=2= [mlelx).a0 , 0<r<1
] Izi

To obtain I;;and I,;, we consider
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f;ﬁ“i[gli) dg =%

i
[ Yy ("] )etoutan =2
o j=0
n—r 11
) - D
Z(—l}‘(n , T)J- e V0149 = —L
j 2
j=o ]

Taking W = y,8, we get

)_;lf:lz
-7 e WwE 1 Dy
Z( (%) )f i)
n—r ¥ilui )
=T e Wwi
Yo (") [ =
— — ——dw = —
i Sy [ 2
j=0 -1 o t

n—-r g 3 n-r
Z” r(_.rj}_ﬁf(oc!]}}lu = _En rii_} _(3.3)
: 'j

Where T(Ocij).jfiz_ denocte incomplete gamma integral.

Solving (3.3) for given y, we can find I,;.

Similarly to obtainl,, . we solve the equation

a0

fni[6|§}.d9 =2

Iy
Iz

J- 7 (6lx).d8 = 1- L

(=]
And simplifving it | we get

T —1}1 (1-L)EP 51
= T'(ex ij.‘)'_iifzg' =% 34

i i

Solving (3.4) we can get I,; and hence [I;;, I,;] became (1 — ¥)1002% equal tail Baves credible interval for 8.
Hence we can deduce Bayes equal tail (1 — ) 100% credible interval for R(t) as follow:
Since, P(l,, <@ <L,)=1

By o 48 = ol = 1
P(thi <t {tzr)—i
P(—thi > —tf > —tlu) =%

L 8 iy ¥

P(1—thi<1-¢t < 1—::2:)—5

P(hy <1—1t% <hy)=1 -(35)

where,

hy, = 1—thi and hy, = 1 — i (36)
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gives (1 — ) 100% cradible mterval for R(t) = (1 —t®) 2t given timet.
4. Bayes predictive estimator and (1 — 3)100% equal tail credible interval for future observation

Let Z; be a future observation which has slready survived tmex,. Let w; = £;— xpy. According to Howlader and Hossam
(1993) given the datz x, the conditionz] jont pdf of w; and & 15 given by

hy(w,8/x) = f(w/8).m(8/x)
fw; g1 'I‘__n' (“"‘] g~¥ifam -il::_l':,,"

(1 ) ,_n(" r‘] '[ 1)/

rli-::'(n r‘]EI —[1:—1:3u||9{ 1|

(=1 (") [,

-
J" _r_l'

(1 - x:r} ]9 :.'i._nr

Int=grating out the shove expression with respect to 8, the predictive density of w; i3 given by,

3y~ (y-lagw)”
E..n{ 1)/ (n Fji |:M dg
I:l_x{rijl

5 G () T3

Piw,/x) = Jr h(w, 8/x)df =

1y ( ‘j—[[w +1)
(}:-—wgu-.-ﬂn(l— ) )™
me (=1 (M) e 3

.-_1-\._'l'|’|-_|""|
Elra—v, L W B
wy S | ot
[#y—tagwysin [1—xpp i )
= —— 0=w; <1l—x, (41)
= fmip - 1-'"' F] |_-'_"|

Hence the Bayes estunator of w; under squared error loss function i given by,

w; = E[W,/x]

- el 1
I- H-F I1 () = 'd .-|.
oc; X323( ( i j"-“ (Lrl.—lngw,-+1ﬂ(1—1:r3” =

s - (7 )y

Integration can be done by numerically transformation.

Thus the Bayes predictive estmator for a future observation 1s given by
Il =wi+ X A4.2)
Now (1 — ¥)100% equal tai credible mterval for w; can be obtained by solving the equations

fyy 1

[ mtnsodwn=L= [pow/an,

a L

Z

ba | =t
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Consider the equation

hyg
N ¥
'Pl'l:“'-f."fx,'d“rl' = =
) 2
rn _' '.‘_{f“;r_}':—:l}f"'rlj}‘.-—lngw-+1r1lz:l—x:,:,:ljlx:_1.dw,- -
() =0ifyT e
e |:, \} _1}' K |__'L +].|f'|.|j. I J.:Iil.nc- ! dd
- i 3 - T j )
? < I__'!, +.|.|:1|1—er:|:| |mrTTr||1+d il I
() -0y 2
- 1 1
?_r _1} ra
! ul:: i } ¥ +1|:1I1 x:,:,jljlx:(i_ Inhy; Ve
¥+ Inll—xq, J ¥
() (=0ifyT 2
i i [V :
immn{io)
= 43
E'I'" 'rer'-'I'l( 1.!" }J [ }
Similatly consider
1
fpl-li'l."p'l-l_‘ti:ld'l."r'l- = g
Rz B
hay
. ¥
Jr B(w|x)dw, =1 -3
Uzing (4.3), we can gst
e s
}'l—ﬂ. zf+In 1—.‘::1‘:” ¥
TH— = 7] = 1_5 [:-1'4}

Lejma |'.'1-".: i

Solving (4.3) and (4.4), we get (1 — ) 100% equal tad credible mterval (kg k,) for wi, hence for future observation it becomes
I:h:l.l' + Lipye |I-"ZI' + x:F)II

5. Bayes predictive estimator for the remaining (n — ) order statistics truncated at Xy and their (1 — y)100% equal tail
credible interval

In thiz section we have used the method considered by Hawlader and Hosszim (1995)

Let X

wi- T +1 =5 < n denote the failure time of the 5" unit to fail i case of i*" double prior distribution.

The conditional pdf of u; = X, ; — X from a pdf truncated at X, s given by,
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r

(F(u))™ {1 = Flu)y=.f(u,)

.E[:—r_n—:—:l:l

flu/6)= L D=u =1

Using (1.1} and (1.2) we get

=
Eu?: ri- 1|1 IS‘:|

— ik
" N m=—T—]
.S: r—s+i’pE ET—;—rl:’ﬂu F}I 1 _I.LF',J]? il -1 _x:r:l:'?}

flu/8) =

where 0 <u; < 1-x,,

since using the well kmown relation between binemial sum and mcomplete beta function.

]
[1_f3':f| n-r ) —
. Rk AW gt r gyt
J WL —w) " dw = .S[:—r_n—:—i}' z I[ i )l::l._j- _-T:r:.zl -_ ':1 _I k! _x'r__.:I }
a Jms-T

Which 15 the pdf of u; under the range 0 < u; <1 —x.

For grven x, the conditional jomt pdf of w; and 8, 15 grven by
fla,8/x) = flx/8)m(8/x). D=x < 1—xp

E,ﬂ?::—r}—:l.rl — Q:Iﬂ._:. rg.—r'llr H.—_F} E—J'_E'Eﬂ::—il-'_l}_l'

.'I-n'\.
'_:' mr |- L - m—r—j
ﬁ::-r.n-s-ip-z.“.n—if#(E}:;.,[“;'}t_i— ) = (1=x)f)

]
E.

Integrating out &, the predictive density of u; i3 given by,

n=lr 13 rfﬁu:::u?'[:—r}—i[:j_ﬁ?)"_:E—J'_?IdE

Plug /x) = 1=t
(-0 (™)1 o o
.S::—r_n—:—i}- :.1_5—-!.':“-.h (EI_: r{n r}| i _x’r__.j ’ i:l _|:1 —I:r}}S'}" r ‘}

E

0=y 1 —xpy

w1 (7)o [T oot emtems (Ems () (—uf) ™ e

fi }( I_:I'—i}lr }f-x.){ .-1(“ '}|1 ) }|1—|1 Irjjl?:lﬁ_,_f,-

T_:;-: 1)/ {n r} E-:. sfn- : [ —q s rfﬁuz -8y~ n—w-rilagw] g

fi }( I_:I'—i}lr }f-::.){ .-1(“ '}|1 I".J }|1—|1 Irjjgjﬁ_,_f,-
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R DR S EUTI

k= feth g b= LR =
(¥ =im e =] Bep |
= ' =T \' ’
(SN = ,I o T CEE N R TR B
0= u,- <1—x, J3.0)

which 1z predictive density of u,.

Under squared error loss finction, Baves predictive estimate of w; i3 given as,
1=,
u; = Efu;/x) = f . Plu fx)du;
a

‘rn:l.—rﬁ..- m-tr_ 93] lrn r} ['*E.: E?._: r_;—ill —uf :Iﬂ-:E__-,-_s'dul.ln’ﬁ'

l—:; f }fn:.

.E;:—r_n—:-ij' T.;T |-5 r{n— }|1—I FJ -:.1 (1-— _'x.'.-m::ls'}'l ! }

]
E,

=0 () T LT e T (1 — o) e g

l-:l
(03 (%) Fa ) -
.S::—r_n—:—i)- EE% . {Erln_—:r_rl(rtl—r} I1 —x:rf,j 1 —-i1 x'rJ:I?}ﬂ r }

A3.2)

4

Fors=r+1,
rL—r__.,_:\c :'I :C.-: 1:]_|-.-_-.-": I:-_-'r_ I'-r-‘r - |.- 1:11-"' == I. -\.'rv—-.lsn ﬂ‘.:
- T (¥ y=imee =] bag | B =
%= Ty — -(3.3)

[ e R LT e )
= NN ) a2 ?) |
n, - “ Fl

# A

(1) 100% equzl tail credible mterval (H,;, H.;) can be cbtamed from the equation:

rHu o, . — ol Y Nl 5
Jg ¥ Bug/x)du; = S = Je, Pou /x)du; JA34)
Consider the aquation
iy
- ¥
f Bo(u; /x)du; = 5
0
_1'\-|l_|' (ﬂ. j ﬂ,l R-z 1 Iﬂ S
IHM gt | 1 ] ol G N
=li] l-:l wy=1 i
[}',-—{ﬂ—w—r,l logu;) y
[_1-1’.'(5-?] . . - E
e U PR SRR L)
Brormezesy Ljca S, ': :--'-r( RIS AR LT e %) i
A
i e (T e e N .
P [y - I =3 .13.3)
CHR L O . - 8y Wil =4l
B ey LT Tay] II*'L:;—H“_' Wamzg) - t-2p % J

Similarly we solve
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L=

f P(ux)du; =

Hgy

[ et

rHz Y Y Ty — ¥
[ Pelu/x)du; =1 -

T LA e ] 17
- (T IR (- emw-r) lag Hy )Y

i S 1—5 ... (3.6)

Tt TH— A 5) gyttt
-I:;i—r'ﬂ.—il-]. "l-:'TI"'!.‘i—FI_ 1 _|[1—-'l-'-:1-:‘-| 1— [1- .'l.'.ra-__l .I

Fy

{(—}

Solving (3.5) and (5.6) for H, ;and H,;, we get equal tzil credible mterval for u;.

ence (1-3) 100% equal tail credible mterval for T, becomes;

[H1|'+I;r;w qu""-f;r;.:l
Particular for 3= r+1, the mterval can be obtamed by selving the equations,

(n— '?"IE,_:] 1':|;"(n:r::| :I—-r:-]—i R-T— i:l': o I 1{(}:{_'::?1_]-Jr-—'?":l].DEHiI-]_II}

¥
".':TI:_ll—IHj( () @ —x) L - )T ’
and
(- Zr =1y ("7 ) Eea () -y 1{(}}'_{"’1—W—?':'IDEHzf]_II}z1_;
0T (g () ) 1) ‘

“1
s

7. Simulation study

A Monte Carlo simulation study is carried out to compare the performance of the Bayes estimators under different joint priors and
single prior. To generate 1000 Type-II censored samples the value of the parameter 6 is considered as 0.5 and the values of the
hyper parameters for all joint and single priors are considered as a; = 3, b; = 2, i=1,2,34 and ¢ = 1 for Jeffery’s prior, c=2 for non
informativeprior, c= 3 for non informative prior and c=0 for only gamma prior. The reliability is calculated at time t = 0.6.
Simulation is done for sample size (n) 20 and for different censored values (r) like20and 15. In each case Bayes estimates of 0,
R(t), future observation z* and (r+1)™ ordered failure time X1y are obtained Their mean squared errors (MSE) and Bayes equal
tail credible intervals are also obtained. The first, second and third values in each cell of columns third and fourth of Tables 1 to 2
denote the Bayes estimate, MSE and credible intervals.

8-A. Comparison of priors based on the MSE and credible interval of 0

From the third column of Tables 1 it is observed that the values of the MSE of the Bayes estimator of parameter 6 is smaller in
case of Gamma-non informative ( ¢= 3) joint prior and then followed by Gamma-non informative (c=2), Gamma - Jeffery’s ( ¢
=1) and only gamma priors for all the values of n and r considered here . Length of its credible interval is smallest also in
Gamma-non informative ( c= 3) joint prior and then followed by Gamma-non informative ( c= 2), only gamma and Gamma-non
informative ( c= 2). Also as value of ¢ increases, MSE of 0 decreases. Similarly increase in the value of r has decreasing effect on
MSE of 6 for any types of joint or single priors.

8-B. Comparison of priors based on the MSE and credible interval of R(t)
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From the fourth column of Tables 1 it is observed that for all values of n and r considered here the values of the MSE of the Bayes
estimator of R(t) is smaller in case of the joint prior Gamma-non informative ( ¢= 3) and then followed by Gamma-non
informative ( ¢= 2) , Gamma-non informative ( c= 1) only gamma priors. i.e. as the value of ¢ increases in gamma and non
informative joint prior the value of MSE of R(t) decreases.

Table 1. Bayes estimates, MSE and Credible intervals for 8 and R(t) for n =20

Joint priors r 0 R(t)
Gamma - Jeffery’s (c=1) 10 0.56086 0.24629
0.01731 0.00233
(0.33533, 0.82611) (0.15650, 0.34181)
15 0.55484 0.24424
0.01507 0.00206
(0.34371, 0.81018) (0.16043, 0.33671)
Gamma-non informative ( c=2) 10 0.53722 0.23727
0.01420 0.00196
(0.30364, 0.798623) (0.15255, 0.33267)
15 0.52955 0.23458
0.01185 0.00167
(0.32219, 0.97541) (0.15117, 0.32642)
Gamma-non informative ( c= 3) 10 0.51877 0.23025
0.01280 0.00183
(0.37824, 0.77497) (0.15120, 0.32478)
15 0.50421 0.22477
0.00996 0.00148
(0.30094, 0.74874) (0.141486, 0.31590)
Only gamma 10 0.58367 0.25497
0.02131 0.00282
(0.35754, 0.85100) (0.16598, 0.35008)
15 0.58002 0.25373
0.01964 0.00262

(0.36480, 0.84066)

(0.16939, 0.34679)

Table 2. Bayes estimates and Credible intervals for Z" and X(r+1) for n =20

*

Joint priors r Z Xt1)
Gamma - Jeffery’s (¢ =1) 10 0.48864 0.23391
0.00764 0.02136
(0.21613, 0.95918) (0.21315, 0.66199)
15 0.68611 0.57757
0.00939 0.01789
(0.52027, 0.97662) (0.52015, 1.51168)
Gamma-non informative ( ¢=2) 10 0.48127 0.26600
0.00745 0.03735
(0.21335, 0.95240) (0.21301, 0.51712)
15 0.681142 0.57266
0.00921 0.01800
(0.52021, 0.97541) (0.52015, 1.51027)
Gamma-non informative ( ¢= 3) 10 0.47221 0.33012
0.00721 0.05614
(0.21023, 0.94918) (0.20873, 0.38294)
15 0.67599 0.568013
0.00910 0.01806
(0.52018, 0.97401) (0.52015, 1.50461)
Only gamma 10 0.49880 0.26508
0.00742 0.02626
(0.21808, 0.96170) (0.21737, 0.78409)
15 0.69095 0.58237

0.00913
(0.52036, 0.97771)

0.01790
(0.52016, 1.51410)

The minimum length of the credible interval of R(t) is observed for the joint prior Gamma-non informative (c= 3) and then
followed by Gamma-non informative (c=2), only gamma and Gamma-non informative (c= 1) in case of all the values of n and r
considered here. i.e. as the value of c increases in gamma and non informative joint prior the value of length of credible interval
of R(t) decreases.

8-C. Comparison of priors based on MSE and credible interval of future predicted value
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From the third column of Tables 2 we find that MSE in case of r = 10 as well as r=15is minimum in case of Gamma-non
informative (c= 3) and then followed by Only gamma prior, Gamma-non informative (c= 2) and Gamma - Jeffery’s (¢ =1) in case
of all the values of n and r considered here.

The length of the confidence interval of future predicted value becomes minimum in case of Gamma-non informative ( c= 3) and
then followed by Gamma-non informative ( c= 2), Gamma - Jeffery’s ( ¢ =1) and only gamma priors. Here we observe that as c
increases in gamma and non informative joint prior the length of future predicted value decreases for r = 10 as well as 15.

8-D. Comparison based on the MSE and credible interval of next ordered failure time X.1).

From the fourth column of the Tables 2 we observed that minimum MSE is observed for Gamma- Jeffery’s ( ¢ =1) joint prior then
followed by only gamma, Gamma-non informative ( ¢=2) and Gamma-non informative ( c= 3) priors. Here MSE increases as the
value of ¢ increases in the joint priors.

The minimum length of credible interval of X, is observed in case of Gamma-non informative ( ¢= 3) then followed by
Gamma-non informative (c= 2), Gamma-non informative ( c= 1) and only gamma priors for r = 10 as well as 15.. We also
observe that as ¢ increases the length of confidence interval of X,y decreases as ¢ increases for r = 10 and 15 both.
Thus we observed that Gamma-non informative ( ¢c= 3) joint prior performs well compared to the other single and joint priors
considered in this study for almost all the characteristics considered here except for MSE of future predicted value.
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