

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 8, Issue, 03, pp. 28319-28324, March, 2016 INTERNATIONAL JOURNAL OF CURRENT RESEARCH

RESEARCH ARTICLE

VISIBLE LIGHT ACTIVATED PHOTOCATALYTIC DEGRADATION OF ANILINE USING H₂O₂ SENSITIZED BiVO₄

Umabala, A. M., Suresh, P. and *Prasada Rao, A. V.

Department of Inorganic and Analytical Chemistry, Andhra University, Visakhapatnam-530 003, India

by photoluminescence spectra using terpthalic acid as probe molecule.

Photocatalytic degradation of aniline is studied over H₂O₂ sensitised monoclinic BiVO₄ under visible

light irradiation. Combination of BiVO4+H2O2 showed a synergetic effect in enhancing the rate of

degradation. Formation of more OH free radicals during irradiation in presence of H₂O₂ is ascertained

ARTICLE INFO	ABSTRACT	

Article History: Received 14th December, 2015 Received in revised form 20th January, 2016 Accepted 26th February, 2016 Published online 31st March, 2016

Key words:

Aniline, Photocatalytic degradation, BiVO₄, Synergetic effect.

Copyright © 2016, Umabala et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Umabala, A. M., Suresh, P. and Prasada Rao, A. V. 2016. "Visible light activated Photocatalytic degradation of aniline using H₂O₂ sensitized BiVO₄", *International Journal of Current Research, 8*, (03), 28319-28324.

INTRODUCTION

Aniline, a common by-product of petroleum, coal and several other chemical industries is used in rubber, polymer, herbicide, fungicide, pharmaceutical and dye industries. Because of its significant solubility in water, aniline occurs as one of the important pollutants in ground water wells as well as in surface waters. Being toxic and recalcitrant in nature aniline is classified as a persistent organic pollutant by the US environmental protection agency. Several methods have been proposed for the treatment of aniline containing effluents. These methods include adsorption (An et al., 2010), chemical oxidation (Zhang et al., 2010), biological oxidation (Li and Xie, 2007), ozonation (Sauleda and Brillas, 2001), reverse osmosis (Gomez et al., 2009), sono degradation (Song et al., 2007), catalytic wet air oxidation (Gomesa et al., 2008), electro chemical oxidation (Fu et al., 2008), photo-Fenton (Fukushima et al., 2013), combined photo-Fenton & biological oxidation (Anotai et al., 2006) etc. These methods require either disposal of secondary pollutant generated by phase transfer or a control of reaction conditions and operation within a narrow pH range. During the past few decades, considerable attention has been focused on semiconductor mediated heterogeneous

Department of Inorganic and Analytical Chemistry, Andhra University, Visakhapatnam-530 003, India.

photocatalysis for remediation of several toxic organic pollutants. Main advantage of this process is its ability to mineralize hazardous pollutants at ambient temperature under solar radiation avoiding filtration, flocculation and generation of secondary pollutants. TiO₂ has been extensively studied as a useful photocatalyst because it is inexpensive, non-toxic, chemically & biologically inert, photostable and reusable with good efficiency. These advantages are however off set due to its wide band gap of 3.2 eV allowing absorption only in U.V. region below 380nm that lies within 5% of solar radiation. Consequently, a number of strategies have been demonstrated to improve the performance of TiO₂ and enhance the absorption range of TiO₂ in to visible region of solar radiation by suitable doping/codoping with alkali, alkaline earth and transition metal atoms, anions and/or cations, surface sensitization and nano composite formation (Prasada Rao et al., 2015). Simultaneous investigations by many researchers on ternary metal oxides as potential visible light responsive photocatalysts led to the development of ZnWO₄ (Montini et al., 2010), Bi₂MoO₆ (Martínez-de la Cruz and Obregón Alfaro, 2010), Bi₂WO₆ (Yi-Hsien et al., 2011), Bi₂Mo₃O₁₂ (Suresh et al., 2015), Fe₂Mo₃O₁₂ (Suresh et al., 2014) etc. for the degradation of dyes with different chromophores. Recently, visible light photocatalytic degradation of 2, 4- nitrophenols, nitrobenzene, acetophenone and Brilliant green have been reported from this laboratory using BiVO₄ (Umabala, 2015;

^{*}Corresponding author: Prasada Rao, A. V.

Umabala *et al.*, 2016). Present paper describes photodegradation of aniline over H_2O_2 sensitized BiVO₄ under visible light irradiation.

Synthesis of Photocatalyst

BiVO₄ is prepared by room temperature solid-state metathesis synthesis reported elsewhere. Stoichiometric amounts of BiOC1 (Loba Chemie PVT. Ltd) and NaVO₃ (98% HIMEDIA) in the molar ratio of 1:1 are mixed in an agate mortar and ground for 2hrs in ethanol. With progressive grinding, the mixture exhibited a canary yellow colour. After 2hrs of grinding, the mixture is washed several times with distilled water to completely remove the bye product NaCl and the residue is dried at 80°C in an air oven. The dried powder is subjected to phase identification, mcrostructural investigation and photocatalytic studies.

Characterization Techniques

Phase purity of the resultant powder was investigated with Xray diffractometer (PANalytical- X' Pert PRO, Japan) at room temperature, using Nickel filtered Cu-K_{α} radiation (λ = 1.54059 Å), with a scan rate of 2° min⁻¹.

Photocatalytic studies

Photo catalytic activity of BiVO₄ was evaluated in terms of degradation of aniline under visible light. 100 mg of the catalyst was dispersed in 100ml aniline aqueous solution (5 mg/L) and the suspension was magnetically stirred for half an hour in dark to ensure adsorption/desorption equilibrium between photo catalyst powder and dye. The suspension was then exposed to 400 wt metal halide lamp; 5ml aliquots were pipetted at periodic time intervals and filtered through 0.45 micron Millipore filters to remove the suspended powder. The spectra as a function of irradiation time were recorded using UV-Visible spectrophotometer (Schimadzu). The extent of photodegradation was calculated using the following equation % Photodegradation = $((A_t-A_0)/A_0) \times 100$

where A_0 and A_t correspond to the initial absorbance and absorbance at time 't' respectively.

Photoluminescence studies

50 mg BiVO₄ catalyst is added to the beaker containing 100 ml of terpthalic acid (TPA) solution (0.25 mmol L^{-1} in 1mmol L^{-1} NaOH solution) and 10 µm H₂O₂. The solution is stirred for 15 min in dark followed by irradiation by 400 w metal halide lamp for 30 min. The reacted solution was centrifuged and the clear solution is used for photoluminescence measurements in a fluorescence spectro flourometer (Flouromax 4) with the excitation wavelength of 315 nm.

RESULTS AND DISCUSSION

Karunakaran and coworkers (Karunakarn and Senthivelan, 2005) reported photocatalytic oxidation of aniline to azobenzene using CdS under illumination at 254nm. Liu *et al.* (2011) reported degradation of aniline with boron doped

goethite under U.V and visible light irradiation. Liao et al. (2011) reported photocatalytic degradation of aniline with Bdoped MnO under U.V. irradiation for 6h. Guo Lin et al. (2014) reported visible light driven photocatalytic degradation of aniline over NaBiO₃ at pH= 2. F.A. Aisien and coworkers (2014) reported application of periwinkle shell ash as photocatalyst for the photocatalytic degradation of aniline at pH = 8 under U.V. irradiation with addition of H₂O₂. Anil kumar and Nupar Mathur (2006) studied photodegradation of aniline at the interface of TiO₂ suspension containing carbonate ions under U.V. irradiation and observed that the addition of CO_3^{2-} to Degusa P25 increased the number of active adsorption sites at its surface. Navin San and Zakiye Cinar (2001) reported addition of H2O2 increased the photodegradation rate significantly over TiO_2 where as presence of Cu^{2+} showed negative effect. Canle and coworkers (2005) investigated the mechanism of TiO₂- photocatalysed degradation of aniline under U.V. irradiation for 6h and concluded that acid medium inhibited degradation while in alkali medium the degradation was fast and identified nitrobenzene as the main photo product of aniline degradation. Shahrezaei et al. (2012) reported 50% photocatalytic degradation of aniline in presence of TiO₂ for 2h of U.V. illumination at pH= 12. Long Wenhua et al. (2000) investigated kinetics of photocatalytic degradation of aniline in water over TiO₂ supported on porous nickel and reported 60% degradation for 8h of U.V. irradiation. Hequing Tang et al. (2010) reported photoctalytic removal of aniline over TiO_2 at pH=4. According to these investigators, oxidation of aniline occurred for an initial concentration of 0.02mmol/L and when aniline concentration is increased to 0.5mmol/L photocatalytic oxidation of aniline led to formation of azobenzene. Further increase in concentration of aniline to 3mmol/L led to polymerization of aniline. Above reports indicate that most of the studies relating to aniline photo degradation have been done with U.V. irradiation and the irradiation times vary in the range of 4-6 hours.

X-ray diffraction pattern of $BiVO_4$ sample used in this study is shown in Fig. 1. All the observed diffraction peaks could be indexed to monoclinic $BiVO_4$ of JCPDS File No 75-2480. In the absence of any extra peaks due to possible contaminant, the sample under study is ascertained to be phase pure monoclinic $BiVO_4$.

Fig. 2. U.V-visible absorption spectra of (a) aniline, (b) aniline+H₂O₂, (c) aniline+BiVO₄, and (d) aniline+BiVO₄+H₂O₂ as a function of irradiation time (aniline 5ppm, BiVO₄ 100mg, H₂O₂ 10 µm)

Fig. 3. Variation of spectral intensities for aniline as a function of irradiation time with (a) 50mg, (b) 100mg and (c) 150mg of BiVO₄

Fig. 4. Photoluminescence spectra of TPA solutions containing BiVO₄ in presence and in absence of H₂O₂ before and after irradiation

Fig. 5. Plot of ln(Ct/C0) vs irradiation time for (a) aniline, (b) aniline+H₂O₂, (c) aniline +BiVO₄ and (d) aniline +BiVO₄+H₂O₂

Temporal variation of spectral contours as a function of irradiation time for aniline aqueous solution, aniline+BiVO₄, aniline+H₂O₂ and aniline+BiVO₄+H₂O₂ are shown in Fig. 2. From the figure it can be seen that aniline exhibits two absorption bands one at 230nm and the other at 280nm attributed to protonated and basic forms of aniline respectively. Further, aniline showed negligible photolysis even for irradiation up to 4h (Fig 2a). Presence of H₂O₂ and BiVO₄ alone led to photo degradation of aniline to an extent of 22 and 35% respectively with progressive irradiation up to 5h (Fig 2b and 2c). However, in presence of both BiVO₄ and H₂O₂, aniline has undergone photo degradation to a significant extent of nearly 73% (Fig 2d). Since no new absorption peaks are noticed during photo catalytic oxidation, it is presumed that

aniline undergoes mineralization directly without forming any detectable intermediates like azobenzene or nitrobenzene. Fig. 3. shows effect of amount catalyst on the photodegradation of aniline. From the figure, it may be observed that 100mg of BiVO₄ gives relatively more degradation compared to 50mg. Increase of BiVO₄ to 150mg shows the same extent of photodegradation as that for 100mg. Hence, the optimum amount of catalyst in this study seems to be 100mg BiVO₄. In view of the observed synergetic effect between BiVO₄ and H₂O₂, possible photodegradation mechanism is suggested as follows:

 $BiVO_4 + hv \rightarrow e_{CB}^{-} (BiVO_4) + h_{vB}^{+} (BiVO_4)$ $e_{CB}^{-} (BiVO_4) + Dye \rightarrow Reduced dye$ e^{-}_{CB} (BiVO₄) + H₂O₂ \rightarrow OH+ OH h⁺_{VB}(BiVO₄) + OH \rightarrow OH Dye + OH \rightarrow degradation products

In order to ascertain generation of 'OH radicals during irradiation, Terepthalic acid (TPA) is used as a probe molecule. TPA reacts with OH radicals to produce 2-hydroxy Terepthalic acid (TAOH) which is highly fluorescent with wavelength intensity around 419nm. Photoluminescence spectra for the solution containing BiVO₄ with and without H₂O₂ in presence of Terpthalic acid (TPA) before and after irradiation are shown in Fig 4. The intense peak due to TAOH confirms formation of 'OH free radicals during the irradiation process in presence of H₂O₂. In general, photocatalytic degradation reactions are reported to follow pseudo first order kinetics as per Langmuir-Hinshelwood model and a plot of ln C_t/C_o (where C_o and C_t represent concentration of pollutant at time t = t, and t = 0 respectively) versus irradiation time will be a straight line. Fig. 5 shows plot of ln (C_t/C_o) vs t for the photodegradation of aniline aqueous solution, aniline+BiVO₄, aniline+H2O2 and aniline+BiVO4+H2O2. Rate constants calculated from the respective slopes for photocatalytic degradation of aniline+BiVO4 and aniline+BiVO4+H2O2 are obtained as 2.0×10^{-4} and 6.0×10^{-4} respectively. The above results indicate that aniline can be photocatalytically degraded to an extent of 75% using H₂O₂ sensitized BiVO₄ under visible light in place of energy restrictive U.V radiation without pH adjustment. The process is cost effective, since visible light to an extent of $\sim 45\%$ is available from solar radiation.

Conclusion

Monoclinic BiVO₄ is used to investigate photocatalytic degradation of aniline in presence of an external oxidant H₂O₂. Photolysis of aniline is negligible but photodegradation of aniline+H₂O₂ and aniline+BiVO₄ as a function of irradiation time is 22 and 35% respectively. But in presence of BiVO₄+H₂O₂, aniline photodegradation has reached 73% for visible light irradiation of 5h. The synergetic effect is attributed to formation of more OH free radicals as evidenced by photoluminiscence studies using terpthalic acid as probe molecule.

REFERENCES

- Aisien. FA., Amenaghawon. NA., Oshomogho. FO., 2014. Application of Periwinkle Shell Ash as Photocatalyst in the Heterogeneous Photocatalytic Degradation of Aniline in Aqueous Solution, J. Mater. Environ. Sci., 6, 572-579.
- An. FQ., Feng. XQ., Gao. BJ., 2010. Adsorption property and mechanism of composite adsorbent PMAA/SiO₂ for aniline, *J. Hazard. Mater.*, 178, 499–504.
- Anotai. J., Lu. MC., Chewpreecha. P., 2006. Kinetic of aniline degradation by Fenton and electro-Fenton processes, *Water Res.*, 40, 1841-1847.
- Canle L. M., Santaballa. JA., Vulliet. E., 2005. On the mechanism of TiO₂-photocatalyzed degradation of aniline derivatives, *J. Photocham. Photobiol. A: Chem.*, 175, 192-200.
- Fu. N., Tu. XY., Pan. Y., Liu. WW., 2008. The treatment of high-concentration aniline wastewater via hydro-thermal

electrolysis of catalysis oxidation, *Environ. Chem.*, 27, 578–582.

- Fukushima. M., Tatsumi. K., Morimoto. K., 2000. The rate of aniline after a photo- Fenton reaction in an aqueous system containing iron (III), humic acid, and hydrogen peroxide, *Environ. Sci. Technol.*, 34, 2006-2013.
- Gomesa. HT., Machado. BF., Ribeiro. N., Moreira. I., Rosario. M., Silva. AMT., 2008. Catalytic properties of carbon materials for wet oxidation of aniline, *J. Hazard. Mater.*, 159, 420–426.
- Gomez. JL, Leon. G., Hidolgo. AM., Gomez M, Murcia M D, Grinan G, 2009. Application of reverse osmosis to remove aniline from wastewater. *Desalination*, 245, 687–693.
- Karunakarn. C., Senthivelan. S., 2005. Solar photocatalysis: oxidation of aniline on CdS, *Solar Energy*, 79, 505-512.
- Kumar. A., Mathur. N., 2006. Photocatalytic degradation of aniline at the interface of TiO₂suspensions containing carbonate ions, J. Colloid and Interface Sci., 300, 244-252.
- Li. J, Xie. CJ, 2007. Study on aerobic co-metabolism biodegradation of aniline in wastewater, *Chinese J. Environ. Eng.*, 1, 51–55.
- Liao. S., Zhu. D., Li. Y., Liu. G., Liu. L., 2011. Photocatalytic degradation of aniline with boron-doped cryptomelane type manganese oxide, *Reac. Kinet. Mech. Cat.*, 12, 303-311.
- Liu. G., Liao. S., Zhu. D., Liu. L., Cheng. D., Zhou. H., 2011. Photodegradation of aniline by goethite doped with boron under ultraviolet and visible light irradiation, *Mater. Res. Bulletin*, 46, 1290-1295.
- Liu. G., Wang. Z., Zheng. W., Yang. S., Sun. Ch., 2014. Visible-Light-Driven Photocatalytic Degradation of Aniline over NaBiO₃, Adv. Cond. Matter. Phys., doi.org/10.1155/ 2014/961609.
- Martínez-de la Cruz. A., Obregón Alfaro. S. 2010. Synthesis and characterization of γ-Bi₂MoO₆ prepared by coprecipitation: Photoassisted degradation of organic dyes under vis-irradiation, *J. Molecular Catal. A: Chem.*, 320, 85–91.
- Montini. T., Gombac. V., Hameed. A., Felisari. L., Adami. G., Fornasiero. P. 2010. Synthesis, characterization and photocatalytic performance of transition metal tungstates, *Chem. Phys. Lett.*, 498, 113-119.
- Prasada Rao. AV., Umabala. AM., Suresh. P., 2015. Non-TiO₂ Based Photocatalysts for Remediation of Hazardous Organic Pollutants under Green Technology-Present Status: *A Review J. Aplicble. Chem.*, 4, 1145-1172.
- San. N., Cinar. Z., 2001. Photodegradation kinetics of aniline in aqueous TiO₂ suspensions, *Toxicolog. Environ. Chem.*, 79, 179-794.
- Sauleda. R., Brillas. E., 2001. Mineralization of aniline and 4-Chlorophenol in acidic solution by ozonation catalysed with Fe²⁺ and UVA light, *Appl. Catal. B*, 29, 135-145.
- Shahrezaei. F., Mansouri. Y., Zinatizadeh. AAL, Akhbari. A., 2012. Photocatalytic Degradation of Aniline Using TiO₂ nanoparticles in a Vertical Circulating Photocatalytic Reactor, *Inter. J. Photoenergy*, doi:10.1155/2012/430638.
- Song. S., He. ZQ., Chen. JM., 2007. US/O₃ combination degradation of aniline in aqueous solution, *Ultrasonics Sonochem.*, 14, 84–88.
- Suresh. P., Sujana Kumari. U., Siva Rao. T., Prasada Rao. A.V. 2014. Rapid Visible Light Photo Catalytic Degradation of

Eosin Y, Congo Red and Methyl Orange with Fe₂Mo₃O₁₂ and MoO₃, *J. Aplicble. Chem.*, 3, 2047-2054.

- Suresh. P., Umabala. A.M., Prasada Rao. A.V. 2015. Rapid sun light degradation of Rhodamine-B, Methylene blue, Methyl orange, Congo red and their binary mixtures using suprastoichiometric Bi-Molybdate, *Inter. J. Eng. Apli. Sci.*, 2, 42-46.
- Tang. H., Li. J., Bie. Y., Zhu. L., Zou. J., 2010. Photochemical removal of aniline in aqueous solutions: Switching from photocatalytic degradation to photo-enhanced polymerization recovery, *J. Hazard. Mater*, 175, 977-984.
- Umabala. A.M. 2015. Effective visible light photo degradation of nitrobenzene using BiVO₄ prepared by room temperature solid-state metathesis, *Inter. J. Sci. Res.*, 4, 1521-1524.
- Umabala. A.M. 2015. Effective visible light photodegradation of ortho and para- nitrophenols using BiVO₄, *Inter. J. Eng. Apli. Sci.*, 2, 122-125.
- Umabala. A.M., Suresh. P., Prasada Rao. A.V. 2016. Effective visible light photocatalytic degradation of Brilliant green using H₂O₂ sensitized BiVO₄, *Der Pharma Chem.*, 8, 61-66.

- Umabala. A.M., Suresh. P., Prasada Rao. A.V. 2016. Visible light photocatalytic degradation of acetophenone using H₂O₂ sensitized BiVO₄, *Inter. J.Curr. Res. Chem. Pharm. Sci.*, 3, 10-15.
- Wenhua. L., Hong. L., Sao'an. Ch., Jianqing. Z., Chunan. C., 2000. Kinetics of photocatalytic degradation of aniline in water over TiO₂ supported on porous nickel, *J. Photocham. Photobiol. A: Chem.*, 131, 125-132.
- Yi-Hsien. B.L., Jian Xun. W., Jia-Shi. L., Wen-Hsin. Ch., Wan-Yu. L., Chiing-Chang. Ch. 2011. Synthesis, photocatalytic activities and degradation mechanism of Bi₂WO₆ toward crystal violet dye, Catalysis Today, 174, 148-159.
- Zhang. YQ., Huang. WL., Fennell. DE., 2010. In situ chemical oxidation of aniline by persulfate with iron (II) activation at ambient temperature, *Chinese Chem. Lett.*, 21, 911–913.
