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INTRODUCTION 
 

The simplicity and elusiveness of the three-body problem in its 
various forms have attracted the attention of mathematicians 
for centuries. Among the giants of mathematics who have 
tackled the problem and made important contributions are 
Euler, Lagrange, Laplace, Jacobi, Le Verrier, Hamilton, 
Poincaré, and Birkhoff. Today the three-
enigmatic as ever and although much has been discovered 
already, the recent developments in nonlinear dynamics and the 
spur of new observations in the solar system have meant a 
resurgence of interest in the problem and the derivation of new 
results. If two bodies in the problem move in circular, coplanar 
orbits about their common centre of mass and the mass of the 
third body is too small to affect the motion of the other two 
bodies, the problem of the motion of the third body is called the 
Circular Restricted Three-Body Problem. At first glance this 
problem may seem to have little application to motion in the 
solar system. After all, the observed orbits of solar system 
objects are noncoplanar and noncircular. Euler and Lagrange 
were both awarded the Prix de l’Académie Royale des Sciences 
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ABSTRACT 

Studies of the restricted three-body problem can help in understanding the dynamics of three
interactions in the solar system. The Lagrangian points have important applications in astronautics, 
since they are equilibrium points of the equation of motion and very good candidates to locate a 
satellite or a space station. Zero velocity curves were plotted for constant values of 
were used to define areas of the Lagrange points of the Circular Restricted Three
equations of motion were linearized to find the eigenvectors and eigenvalues. 
eigenvalues to investigate the stability. The invariant manifold structures of the collinear libration 
points for the spatial restricted three-body problem provide the framewor
dynamical phenomena from a geometric point of view. In order to generate a trajectory around the 
Earth, Moon and Earth-Moon system, the two-dimensional nonlinear equations of motion were 
numerically integrated. 
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de Paris in 1772 for their work on the three
Euler was the discoverer of the collinear equilibrium points, 
now known as L1, L2 and L3 (
Lagrange had a more general approach, revealing also the 
triangular (equilateral) equilibrium points 
1873). At these points the gravitational pulls are in balance. 
Any infinitesimal body at any point of the Lagrangian points 
would be held there without getting pulled closer to either of 
massive bodies. Interest in the dynamics around t
points has been increasing in the last decades, as 
the Sun-Earth and Earth-Moon systems have been selected for 
a wide variety of spatial missions (
Breakwell et al., 1974; Gómez 
Masdement 2005). In 2010, the two ARTEMIS spacecraft 
became the first man-made vehicles to exploit trajectories in 
the vicinity of an Earth-Moon libration point, operating 
successfully in this dynamical regime from August 2010 
through July 2011, libration point 
part of “The Global Exploration Roadmap” released by NASA 
and, as recently as June 2012, NASA has identified the 
collinear L1 and L2 libration points in the Earth
potential locations of interest for future human spa
operations. Within the context of manned spaceflight activities, 
orbits near the Earth-Moon L1

lunar surface operations and serve as staging areas for future 
missions to near-Earth asteroids and Mars. 
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EQUATIONS OF MOTION AND METHODOLOGY 
 
We consider the motion of the three bodies with masses �� �� 
and �� under the action of mutual gravity in three-dimensional 
Euclidean space. The mass of the third body-typically an 
asteroid, a comet, a spacecraft, or just a particle-is assumed to 
be negligible. The restricted three body problem is a model of 
the motion of the third body, affected by the gravitational 
attraction of two massive bodies (primaries), which describe 
circular orbits around their common center of masses. In order 
to further simplifty the problem, nondimensional quantities are 
used to calculate the path of the third body. The system is 
nondimensionalized using the following characteristic 
quantities: total mass, � = �� + ��; the distance between the 

primaries � = �� + ��; and, characteristic time, �∗ = ���/��.  
The nondimensional distances to the primaries are �� = � and 
�� = (1 − �), where � = ��/� is the ratio between the mass 
of one primary and the total mass of the system. So the distance 
between �� and �� is normalized to one. The two main bodies 
have a total mass that is normalized to one. Their masses are 
denoted by �� = (1 − �) and �� = �, respectively.  
 
The gravitational constant � has been normalized to one, and 
the unit of time is defined such that the period of the motion of 
the primaries is 2�. Choose a rotating coordinate system so that 
the origin is at the centre of mass and �� and �� are fixed on 
the x-axis at (−�, 0,0) and (1 − �, 0,0), respectively. Let 
(�, �, �) be the position of the third body in the rotating frame. 
When the movement of the third body is only studied in the 
plane of motion of the primaries (� = 0), the problem becomes 
circular planar restricted three body problem (PCRTBP). 
There are several ways to derive the equations of motion for 
this system. An efficient technique is to use the covariance of 
the Lagrangian formulation. This method gives the equations in 
Lagrangian form.  
 
The motion (�(�), �(�), �(�)) of the third body relative to the 
co-rotating is described by the second order differential 
equations: 
 

�̈ = 2�̇ +
��

��
= 2�̇ + ��

�̈ = −2�̇ −
��

��
= −2�̇ − ��

�̈ =
��

��
= ��

																																					………… . . (1) 

 
where � is the effective potential function, 
 

� =
1

2
(�� + ��) + �

1 − �

��
+
�

��
�																				………………(2) 

 
and ��, ��, �� are the partial derivatives of � with respect to 

the variables �, �, �, respectively and  
 

�� = �(� + �)� + �� + ��  
 

and �� = �(� + � − 1)� + �� + ��,  

are the distances from the third body to the primaries 
respectively. Equation (1) is a set of three second-order, 
nonlinear, coupled ordinary differential equations that are a 
mathematical representation of the CRTBP. 
 
LAGRANGE POINTS AND ZERO VELOCITY CURVE 
 
The Lagrange points L1, L2, L3, L4, and L5 of the CRTBP are the 
equilibrium solutions of (1). This Lagrange points are 
stationary only in the rotating frame and are critical points of 
the function � (effective potential). The first Lagrange points, 
L1, L2, and L3, all lie on the �-axis. Consider equilibria along 
the line of primaries where � = � = 0. In this case the effective 
potential function has the form 
 

�(�, 0, 0) = −
1

2
�� −

(1 − �)

|� + �|
−

�

|� + � − 1|
 

 
It can be determined that �(�, 0, 0) has precisely one critical 
point in each of the following three intervals along the x-axis: 
(i) (−∞, −�), (ii) (−�, 1 − �) and (iii) (1 − �,∞). This is 
because �(�, 0, 0) → −∞ as � → ±∞, as � → −�, or as 
� → 1 − �. So   
 

�� = � −
(1 − �)(� + �)

|� + �|�
−
�(� + � − 1)

|� + � − 1|�
= 0									 ……… (3) 

 
This has one solution in each of the following three intervals 
along the �-axis. These solutions can be calculated numerically 
as they are the roots of polynomials. If � ≠ 0 and � = 0, it 
follows that �� = �� = 1 and so there are two Lagrangian 
points, denoted L4, and L5, located at the third vertex of the two 
equilateral triangles with the two primary masses as vertices.  
 

The exact coordinates are: �� = (�, �, �) = �
�

�
− �,

√�

�
, 0� and 

�� = (�, �, �) = �
�

�
− �,

√�

�
, 0�.  

 
The system (1) has a first integral called the Jacobi integral, 
which is given by: 
 
�(�, �, �, �̇, �̇, �̇) = 2� − (�̇� + �̇� + �̇�).  
 
The usefulness of the Jacobi constant can be appreciated by 
considering the locations where the velocity of the third body is 
zero. In this case we have 
 
�(�, �, �) = 2�(�, �, �) 																																							……………… (4) 
 
The equation (4) defines a set of surfaces for particular values 
of �(�, �, �). These surfaces, known as the zero-velocity 
surfaces, play an important role in placing bounds on the 
motion of the third body. For simplicity we restrict ourselves to 
the x-y plane produces a set of zero-velocity curves. The value 
of the Jacobi constant dictates regions in the (�, �, �) space 
where the third body may and may not move. The level 
surfaces of the Jacobi constant, which are also energy surfaces, 
are five-dimensional manifolds. Let ℋ be the energy surface, 
i.e. ℋ(�, �) = {(�, �, �, �̇, �̇, �̇)|�(�, �, �, �̇, �̇, �̇) = constant}. 
The projection of this surface onto position space is called a 
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Hill’s region �(�, �) = {(�, �, �)|�(�, �, �) ≥ �/2}. The 
boundary of �(�, �) is the zero velocity surface. The 
intersection of this surface with the (�, �) − plane is the zero 
velocity curve. The third body can move only within this 
region.  
 
For the Earth-Moon system, � = 0.01215 is know and we can 
solve the equation (3) numerically in Matlab and we find the 
location of the Lagrangian points (L1, L2, and L3). The locations 
of the equilateral triangle libration points are much easier to 
compute. The value of the Jacobi integral at point �� (� =
1,2,3,4,5) will be denoted by ��. The non-dimensional rotating 
frame coordinates (�, �, �) of each of the five libration points 
for the Earth-Moon system value of � appear in Table 1 along 
with the value �� associated with a stationary located at each 
point of equilibrium.  
 
Table 1. Earth-Moon libration point rotating frame locations and 

“energy” values 
 

�� � � � ��� 

�� 0.8369 0 0 3.1883 
�� 1.1557 0 0 3.1722 
�� -1.0051 0 0 3.0121 
�� 0.48785 +0.866 0 2.9880 
�� 0.48785 - 0.866 0 2.9880 

 

Figure 1 shows the location of the libration points and the zero 
velocity curve at the energy level of �� for the Earth-Moon 
system. In this figure, there are three mains realms; namely the 
inner region, outer region and the forbidden region.  
 

 
 

Fig. 1. The five libration points and the zero velocity curve at �� 
for the Earth-Moon system 

 

The plot suggests that the barrier between the Earth and the 
Moon is just opening at the energy ��. This is the reason for the 
name ��. It is the first point where the Jacobi surface begins to 
“tear”. The barrier between the Earth and the Moon has now 
reseeded, and there is a “neck” near �� through which a 
trajectory might pass. In fact the linearized dynamics at �� 
show it to be a fixed point of “center×saddle” type, and while 

most orbits will be ejected from this neck region, the presence 
of the center manifold in the nonlinear problem suggests that 
we may be able to find periodic orbits in the neck, which orbit 
�� or ��.  

 
LINEARIZATION OF THE CRTBP AT THE 
LAGRANGE POINTS  
 
Because the Circular Restricted Three-Body Problem is non-
linear dynamics, there is no general, easy analytical solution. 
But, some particular solutions such as linearization or 
perturbation method can give restricted analytical solution, and 
some numerical methods, such as differential corrector and 
Poincare map, can also useful for finding advantageous 
trajectory and periodic orbits. Because the CRTBP has no 
analytical solution, it is necessary to numerically equations of 
motion in order to propagate a three-body orbit. This first 
requires that the equations be formulated as a system of ODEs. 
We introduce the state vector x and its time derivative �̇. These 
are six-element column vectors, containing the position and 
velocity and the velocity and acceleration, respectively.  
 

�̇ =
��

��
=

⎝

⎜
⎜
⎛

�̇
�̇
�̇

2�̇ + ��
−2�̇ + ��

�� ⎠

⎟
⎟
⎞
= ��																																 ………… . . (5) 

 

Analysis of orbit stability also requires numerical methods. We 
begin by defining the A matrix, which is the Jacobian of the 
state derivative �̇. This matrix is defined generally as: 
 

� =
��̇

��
																																																																							…………… . (6) 

 

In addition to describe the instantaneous dynamics of orbit, the 
� matrix is used to define the state transition matrix, Φ(�, ��). 
This matrix maps deviations from the initial state forward to 
time t. It is defined by the differential equation: Φ̇(�, ��) =
�Φ(�, ��) with the initial condition Φ� = �.  The state transition 
matrix must be integrated along with the state. This most easily 
done by creating one long state vector, � = [�,Φ]�, where the 
elements of Φ have been reshaped into a 36 × 1 column vector.  
A special case of the state transition matrix is the monodromy 
matrix, �. This is defined as the matrix mapping initial 
deviations forward by one orbital period: � = Φ(�, ��). The 
monodromy matrix is important because it contains 
information about the stability along the entire orbit. In the 
CRTBP, the matrix � is greatly simplified, as most of the 
derivatives are zero. After deriving expressions for each of the 
derivatives, we get a matrix of the following form:  
 

� =

⎝

⎜
⎜
⎛
				
0	 									0 						0
0 										0 						0
0 										0 						0

			1 	0 0
			0 1 0
			0 0 1

1 + 2� 		0 		0
0 2 − � 		0
0 0 −�

		0 2 0
−� 0 0
		0 0 0⎠

⎟
⎟
⎞
															……… . (7) 

 

where � = (1 − �)/|� + �|� + �/|� + � − 1|�.  
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RESULTS AND CONCLUSIONS 
 
Using � for the Earth-Moon system and plugging the 
coordinates for �� into the system matrix gives a constant, 
whose eigenvalues and eigenvectors are  
 
�� = +2.9316
�� = −2.9316
�� = +2.3341�

		

�� = −	2.3341�
�� = +2.2686�
�� = −2.2686�

 

 
and 

�� =

⎝

⎜⎜
⎛

−0.2933
0.1350
0

−0.8598
0.3957
0 ⎠

⎟⎟
⎞

, �� =

⎝

⎜⎜
⎛

−0.2933
−0.1350

0
0.8598
0.3957
0 ⎠

⎟⎟
⎞

 

 

�� =

⎝

⎜⎜
⎛

−0.1058	 − 	0.0000i
−0.0000	 − 	0.3793i

0
−0.0000	 − 	0.2469i

0.8854
0 ⎠

⎟⎟
⎞

 

 

�� =

⎝

⎜⎜
⎛

−0.1058	 + 	0.0000i
−0.0000	 + 	0.3793i

0
−0.0000	 + 	0.2469i

0.8854
0 ⎠

⎟⎟
⎞

 

 

�� =

⎝

⎜⎜
⎛

0
0

0	– 	0.4034�
0
0

0.9150 ⎠

⎟⎟
⎞
, �� =

⎝

⎜⎜
⎛

0
0

0	 + 	0.4034�
0
0

0.9150 ⎠

⎟⎟
⎞

 

 
respectively, which is the classical "������ × ������" 
behavior we expect at ��. The linear analysis tells us that �� 
has a one dimensional stable direction (manifold), and one 
dimensional unstable direction (manifold), and a two 
dimensional center (manifold). Repeating this analysis at �� 
and �� gives 
 

�� = −2.1582
�� = +2.1582
�� = +1.8624�

		

�� = −1.8624�
�� = +1.7859�
�� = −1.7859�

 

 

�� =

⎝

⎜⎜
⎛

0.3556
0.2242
0

−0.7676
−0.4838

0 ⎠

⎟⎟
⎞
, �� =

⎝

⎜⎜
⎛

−0.3556
0.2242
0

−0.7676
0.4838
0 ⎠

⎟⎟
⎞
	 

 

�� =

⎝

⎜⎜
⎛

−0.1536	 + 	0.0000i
−0.0000	 − 	0.4474i

0
−0.0000	 − 	0.2861i

0.8333
0 ⎠

⎟⎟
⎞

 

�� =

⎝

⎜⎜
⎛

−0.1536	– 	0.0000i
−0.0000	 + 	0.4474i

0
−0.0000	 + 	0.2861i

0.8333
0 ⎠

⎟⎟
⎞

 

 

�� =

⎝

⎜⎜
⎛

0
0

0	 + 	0.4886�
0
0

−0.8725 ⎠

⎟⎟
⎞
, �� =

⎝

⎜⎜
⎛

0
0

0	 − 	0.4886�
0
0

−0.8725 ⎠

⎟⎟
⎞

 

and 
 
�� = −2.1582
�� = +2.1582
�� = +1.8624�

		

�� = −1.8624�
�� = +1.7859�
�� = −1.7859�

 

 

�� =

⎝

⎜⎜
⎛

−0.3146	– 	0.0000�
0.0000	– 	0.6292�

0
0.0000	– 	0.3178�

0.6357
0 ⎠

⎟⎟
⎞

 

 
 

�� =

⎝

⎜⎜
⎛

−0.3146	 + 	0.0000�
0.0000	 + 	0.6292�

0
0.0000	 + 	0.3178�

0.6357
0 ⎠

⎟⎟
⎞

 

 
 

�� =

⎝

⎜⎜
⎛

−0.1159
−0.9778

0
0.0205
0.1732
0 ⎠

⎟⎟
⎞
, �� =

⎝

⎜⎜
⎛

0.1159
−0.9778

0
0.0205
−0.1732

0 ⎠

⎟⎟
⎞

 

 

�� =

⎝

⎜⎜
⎛

0
0

0	– 	0.7052�
0
0

0.7090 ⎠

⎟⎟
⎞
, �� =

⎝

⎜⎜
⎛

0
0

0	 + 	0.7052�
0
0

0.7090 ⎠

⎟⎟
⎞

 

 
respectively. We see that �� and �� have the same stability as 
��. It is known and that there exist families of periodic orbits-
the so-called Halo orbits around the Lagrange points �� and ��. 
A Halo orbit is a periodic orbit about one of the collinear 
Lagrange points. These orbits are useful because they allow for 
station keeping at locations other than large bodies. An 
important property of Halo orbits is their instability. While 
there is an analytical solution for perfectly periodic orbit, 
numerical errors from integration are enough to cause the orbit 
to diverge. For � = 3.16 in the Earth-moon system, a value 
such that �� < � < ��, the corresponding �� and �� Halo 
orbits appear with the zero-velocity curves (ZVC) in Figure 2 
(� = 0).  
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Fig. 2. Halo orbits around the point �� and �� in the Earth-Moon 

system 
 

 
 
Fig. 3. Stable (cyan) and unstable (magenta) manifolds associated 

with �� and �� Halo orbits in the Earth-Moon system 
 
The instability of Halo orbits and similar periodic solutions can 
be exploited to analyze paths to and from every point on a 
given orbit. While there are infinitely many of these paths, they 
all belong to a well-defined set called a manifold. Matlab 
programming was used to develop manifolds for the CRTBP. 
Suitable values are 1e-12 for RelTol and 1e-10 for AbsTol. The 
manifolds associated to the periodic orbits are centered on the 
manifolds of the points. These 2-dimensional subspaces are 

here called M�,��
� , M��,��

� , M�,��
�  and M��,��

� . Figure 3 shows 

four manifolds in the Earth-Moon system.  
 
The first, in cyan, is the stable manifold M�,��

�  of �� point in the 

the outer region. This is set of trajectories moving forward in 
time that asymptotically approach the Halo orbit. In contrast, 
the second plot in magenta depicts the unstable manifold 

M��,��
� , which departs the Halo orbit over time. The interior 

manifolds M�,��
�  and M��,��

�  are stable and unstable manifolds 

of Earth-Moon �� Lagrange point, respectively. If the third 
body is on a stable manifold, its trajectory winds onto the orbit 
and, if it is on the unstable one, it winds off the orbit. This 
aspect is very important for the design of missions about the 
libration points, for instance, in the Earth-Moon system. The 
stable and unstable manifolds for a symmetric orbit are 
themselves symmetric about the � axis. This is because the two 
experience equal and opposite rotation rates: counter-clockwise 
for forward time (unstable) and clockwise for backward time 
(stable).  In order to generate a trajectory around the Earth and 
Moon for the CRTBP, the two-dimensional nonlinear equations 
of motion were numerically integrated.   
 

�̇ = ��
�̇ = ��

�̇� = 2�� + � − �
(1 − �)(� + �)

��
�

+
�(� + � − 1)

��
�

�

�̇� = −2�� + � − �
(1 − �)�

��
�

+
��

��
�
�

			…… . . (8) 

 

The state-space representation of the equations of motion 
(Equation 8) was programmed into Matlab. The set of four, 
first order, nonlinear equations were numerically integrated 
using the RK4 method. The value of � corresponds to a body 
(third body) traveling around the Moon and the Earth or the 
Earth-Moon system. Moderately stringent tolerances are 
necessary to reproduce the qualitative behavior of the orbit. 
Suitable values are 1e-11 for RelTol and 1e-11 for AbsTol.  

 
 

Fig. 4. The path of the third body around the Earth 

 
Figures (4) and (5) show, in rotating coordinates two periodic 
orbits which begin near the Earth or Moon, respectively, and 
seem to stay in orbit around them. The initial conditions for 
these orbits are: �(0) = 0.12, �(0) = 0, ��(0) = 0, ��(0) =

3.2901 and �(0) = 1.06, �(0) = 0, ��(0) = 0, ��(0) =

0.4638, respectively.  
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Fig. 5. The path of the third body around the Moon 
 

 
 

Fig. 6. Long integration of the transfer orbit for t=700 time units 

 
The trajectories are very sensitive to initial conditions it is 
hoped that by playing with the initial data a an orbit with the 
desired trajectory could be found. Once an orbit is found which 
goes from the Earth side of �� to the Moons, the orbit is  
 
 
 
 
 
 
 
 
 
 
 
 

integrating forward forward gives an orbit which starts near the 
Earth and goes around the Moon. If we integrate the system 
longer an even more interesting picture develops. To find the 
desired orbit we begin with initial conditions: �(0) = 0.83, 
�(0) = 0, ��(0) = 0, ��(0) = 0.1444 near ��.  

 
If  the system is integrated this way for a long time (forward 
and backward) we get the pictures in Figure 6. 
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