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INTRODUCTION 
 
With the computational progress and the increased use of large 
data sets that on occasion require to be aggregated into smaller 
more manageable data sizes we need more complex data tables 
sometimes called “symbolic data tables”, where
correspond to data units (frequently, groups of individuals, 
considered as second-order objects) and columns to variables
In a table of this nature, each entry can contain just one value 
or several values, such as subsets of categories,
real data set, or frequency distributions (
2000; Bacelar-Nicolau, 2000, 2002; Diday and Noirhomme
Fraiture, 2008; Bacelar-Nicolau et al., 2009, 2010, 2014
2014b; Sousa et al., 2010, 2013a, 2013b, 2014;
particular, if each cell of a symbolic data table contains an 
interval we deal with interval variables. In fact, the 
valued data arise in several situations such as recording 
monthly interval temperatures at meteorological stations 
instance, considering a town w, temperature (
January means that the temperature of  the town 
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ABSTRACT 

In this paper we compare the best partitions of data units (cities) obtained from different algorithms of 
Ascendant Hierarchical Cluster Analysis (AHCA) of a well-known data set 
symbolic data analysis (“city temperature interval data set”) with a priori
panel of human observers. The AHCA was based on the weighted generalised affinity,
equal weights, and on the probabilistic coefficient, ���(�, �
standardized weighted generalized affinity coefficient by the method of Wald and Wolfowitz. These 
similarity coefficients between elements were combined with three aggregation criteria, oneclassical, 

le Linkage (SL), and the other ones probabilistic, AV1and AVB, 
methodology. The evaluation of the partitions in order to find the partitioning that best fits the 

underlying data was carried out using some validation measures based on the similarity matrices. In 
general, global satisfactory results have been obtained using our meth
quite close (or even coinciding) with the a priori partition provided by the panel of human observers.
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With the computational progress and the increased use of large 
data sets that on occasion require to be aggregated into smaller 
more manageable data sizes we need more complex data tables 
sometimes called “symbolic data tables”, where rows 

rrespond to data units (frequently, groups of individuals, 
order objects) and columns to variables.  

each entry can contain just one value 
or several values, such as subsets of categories, intervals of the 

al data set, or frequency distributions (Bock and Diday, 
Nicolau, 2000, 2002; Diday and Noirhomme-

, 2009, 2010, 2014a, 
, 2014; 2015). In 

particular, if each cell of a symbolic data table contains an 
In fact, the interval-

valued data arise in several situations such as recording 
monthly interval temperatures at meteorological stations (for 

, temperature (w)= [6, 12] in 
January means that the temperature of  the town w varied in the 
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interval [6, 12] during the month of January)
stock prices, etc. (De Carvalho 
tables can also describe heterogeneous data and the values in 
their cells may be weighted and connected by logical rules and 
taxonomies (Bock and Diday, 2000).
data analysis methods (exploratory, graphical representations, 
cluster analysis, factorial analysis,…) to symbolic data tables is 
required.  
 
Cluster analysis frequently appears in the literature under 
different names in different contexts, such as for example 
unsupervised learning in pattern recognition, and taxonomy in 
biological sciences. The clustering aims at identifying and 
extract significant groups of elements to classify in the 
underlying data so that (based on a certain clustering criterion)
the elements in a cluster are more similar to each other than the 
elements in different clusters. Different types of algorithms to 
cluster analysis (e.g., partitional clustering, hierarchical 
clustering, density-based clustering, grid
been developed (Jain et al.
Hierarchical clustering proceeds successively
smaller clusters into larger ones (agglomerative methods), or 
by splitting larger clusters (divisive methods) (
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obtained from different algorithms of 
known data set of the literature on 
a priori partition of cities given by a 

The AHCA was based on the weighted generalised affinity,	�(�, �′), with 
( �′), associated with the asymptotic 

standardized weighted generalized affinity coefficient by the method of Wald and Wolfowitz. These 
similarity coefficients between elements were combined with three aggregation criteria, oneclassical, 

AVB, the last ones in the scope of the 
The evaluation of the partitions in order to find the partitioning that best fits the 

underlying data was carried out using some validation measures based on the similarity matrices. In 
general, global satisfactory results have been obtained using our methods, being the best partitions 

partition provided by the panel of human observers. 

ribution License, which permits unrestricted use, 

 

12] during the month of January), daily interval 
 et al., 2012). The symbolic data 

tables can also describe heterogeneous data and the values in 
may be weighted and connected by logical rules and 

Diday, 2000). An extension of standard 
data analysis methods (exploratory, graphical representations, 
cluster analysis, factorial analysis,…) to symbolic data tables is 

Cluster analysis frequently appears in the literature under 
names in different contexts, such as for example 

unsupervised learning in pattern recognition, and taxonomy in 
biological sciences. The clustering aims at identifying and 
extract significant groups of elements to classify in the 

sed on a certain clustering criterion) 
the elements in a cluster are more similar to each other than the 
elements in different clusters. Different types of algorithms to 
cluster analysis (e.g., partitional clustering, hierarchical 

based clustering, grid-based clustering) have 
et al., 1999; Lattin et al., 2003). 

proceeds successively by either merging 
smaller clusters into larger ones (agglomerative methods), or 
by splitting larger clusters (divisive methods) (Halkidi et al., 
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2001). Agglomerative methods usually start with each element 
to be classified in its own separate cluster. At each stage of the 
process, the most similar clusters (according to the selected 
aggregation criteria) are joined until only one cluster containing 
all elements remains. Given a set of n elements to classify, the 
divisive methods start with all elements in a single cluster and 
proceed dividing one cluster into two at each step until n 
clusters of size 1 remain. As is referred in Lattin et al. (2003) 
“Some methods are neither agglomerative nor divisive (e.g., 
various approaches that use least squares to fit certain tree 
structures)”. This paper is focused on agglomerative methods 
in the context of cluster analysis and on a symbolic data table 
where each cell contains an interval of the real axis. Some 
dissimilarity measures forinterval data have been reported in 
the literature (e.g., Chavent and Lechevallier, 2002; Chavent               
et al., 2003; Souza and De Carvalho, 2004; De Carvalho et al., 
2006a, 2006b, 2007), as well as some similarity measures 
which allow us to deal with this type of data (e.g., Guru et al., 
2004; Bacelar-Nicolau et al., 2009, 2010, 2014a, 2014b; Sousa 
et al., 2010, 2013a, 2015).  
 
A hierarchical algorithm allows us to obtain a tree of clusters, 
called dendrogram, which shows how the clusters are related. 
By cutting the dendrogram at an appropriate level, a partition 
of the elements to classify into disjoint groups is obtained. An 
important question is related to the number of clusters (How 
many clusters?). In fact, the evaluation of clustering results in 
order to find the partitioning that best fits the underlying data 
plays a very important role in cluster analysis (Halkidi et al., 
2001).  
 
Section 2 is devoted to the methods used to carry out the 
AHCA of cities, and to the measures of validation used to 
evaluate the obtained partitions. Section 3 is concerned to the 
main results obtained from the AHCA of the city temperature 
interval data set (issued from the symbolic data literature), and 
their comparison with apriori partition of cities given by a 
panel of human observers. The paper ends with some 
concluding remarks about the developed work.   
 
Methodological framework 
 
From the affinity coefficient between two discrete probability 
distributions proposed by Matusita (1951) as a similarity 
measure for comparing two distribution laws of the same 
type, Bacelar-Nicolau (e.g., 1980, 1988) introduced the affinity 
coefficient, as a similarity coefficient between pairs of 
variables or of subjects in cluster analysis context. After that, 
Bacelar-Nicolau extended that coefficient to different types of 
data, and the so-called weighted generalized affinity 
coefficient, �(�, �′), between a pair of statistical data units, k 
and k’ (k, k’=1, …, N), is an extension of the affinity coefficient 
for the case of symbolic or complex data, which is able to deal 
with heterogeneous data (Bacelar-Nicolau, 2000, 2002; 
Bacelar-Nicolau et al., 2009, 2010, 2014a, 2014b). 
 
Let � = {1, ⋯ , �} be a set of N data units described by p 
interval variables, Y1, …, Yp,   which values are intervals of the 
real data set (f. i., the entry (k, j), corresponding to the data unit 
k (k=1, …., N) and to the variable Yj  ( j=1, …, p) of the data 

table, contains an interval ��� = ����, ����). In this case, the 

weighted generalized affinity coefficient, between a pair of 
statistical data units, k and k’ (k, k’=1, …,N), is defined in the 
following way: 
 

k'jkj

k'jkjp
j j

II

II
kka

 . 
    )',( 1


    ,  (1) 

 
where	π�	are weights such that 0 ≤ π� ≤ 1, ∑ π� = 1,	and 

corresponds to a generalized Ochiai coefficient for interval 
data, associated with a 22 generalized contingency table 
which entries contain interval ranges instead of the usual 
cardinal numbers of any simple 22 contingency table 
(Bacelar-Nicolau et al., 2009, 2010, 2014b; Sousa et al., 2015). 
The formula (1) is a particular case of the general formula of 
the weighted generalized affinity coefficient when we are 
dealing with variables of interval type. In fact, the weighted 
generalized affinity coefficient between a pair of intervals may 
be computed in two different ways, either by using the general 
formula of the weighted generalized affinity coefficient 
considering the decomposition of the initial intervals into mj 

elementary and disjoint intervals and working with the ranges 
of the elementary intervals; or, alternatively, by using the 
formula (1), without the decomposition of the initial intervals 
(for details, see Bacelar-Nicolau et al., 2009, 2010, 2014b). 
 
Assuming a permutational reference hypothesis based on the 
limit theorem of Wald and Wolfowitz (Fraser, 1975), the 
random variable associated with  jkkj IIaff ',

 
has an asymptotic 

normal distribution. Two of the coefficients related with 
the	�(�, �′) coefficient, are the asymptotic standardized 
weighted generalized affinity coefficient, ���(�, �′), by the 
Wald and Wolfowitz method (see Bacelar-Nicolau, 1988; 
Bacelar-Nicolau et al., 2009, 2010, 2014a; Sousa et al., 2013a, 
2015), and the associated probabilistic coefficient, 
���(�, �′),		in the scope of the VL methodology (V for 
Validity, L for Linkage), in the line started by Lerman (1970, 
1972, 1981) and developed by Bacelar-Nicolau (e.g., 1980, 
1985, 1987, 1988) and Nicolau (e.g., 1983, 1998). This last 
coefficient validates the affinity coefficient between two data 
units k, k' in a probabilistic scale (e.g., Bacelar-Nicolau, 1988, 
2000; Bacelar-Nicolau et al., 2010; Lerman, 1972, 1981; 
Nicolau and Bacelar-Nicolau, 1998). The (hierarchical and 
non-hierarchical) clustering methods included in the VL-family 
are based on the cumulative distribution function of basic 
similarity coefficients (Bacelar-Nicolau, 1980, 1988; Nicolau, 
1983; Nicolau and Bacelar-Nicolau, 1998). 
 
Here, we used the weighted generalized affinity 
coefficient,	�(�, �′), with equal weights (�� = 1/�), and the 

probabilistic coefficient, ���(�, �′), associated with the 
asymptotic standardized weighted generalized affinity 
coefficient by the method of Wald and Wolfowitz. In the case 
of the data set under analysis (“city temperature interval data 
set”) the best clustering results were provided by the 
probabilistic coefficient, ���(�, �′), as a consequence of 
standardizing the affinity values, and of using the 
corresponding probabilistic scale values. Thus, in the next 
section, a special emphasis will be given to the results provided 
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by the ���(�, �′)	coef�icient. A brief reference to the results 
obtained from the �(�, �′)	coefficient will be added. In order to 
compute these coefficients (similarity measures), we consider a 
previous decomposition of each interval of the original 
symbolic data table into a suitable number mj of elementary and 

disjoint intervals, ���ℓ:	ℓ = 1, ⋯ , ���	(Bacelar-Nicolau et al., 

2009, 2010, 2014b). In this paper, the measures of comparison 
between elements were combined with three aggregation 
criteria, one classical, Single Linkage (SL) or nearest neighbour 
method, and two probabilistic, AV1 and AVB, the last ones in 
the scope of the VL methodology, that use probabilistic notions 
for the definition of the comparative functions (e.g., Lerman, 
1972, 1981, 2000; Nicolau, 1983; Bacelar-Nicolau, 1988; 
Nicolau and Bacelar-Nicolau, 1998). 
 
An important step in cluster analysis is to determine the best 
number of clusters. In an optimal clustering scheme, the 
elements of each cluster should be as close to each other 
elements belonging to their cluster as possible (compactness), 
and the clusters should be widely spaced (isolation or 
separation). Therefore, is useful to use, for a cluster of 
elements, measures of its heterogeneity or lack of cohesion, 
and of its isolation or separation, from the rest of the data. 
These measures can be combined to provide measures of the 
adequacy of the partitions (Gordon, 1999). In fact, a general 
approach to finding the best partition involves defining a 
measure of the adequacy of a partition and seeking a partition 
of elements which optimizes that measure (Gordon, 1999). 
Some measures of the heterogeneity of a cluster are defined in 
the literature (e.g., Gordon, 1999). Hennig (2005) refers to 
some different approaches that address different aspects of the 
validation problem, namely, use of external information 
(information that has not been used to generate the clustering), 
significance tests for clustering structure, comparison of 
different clustering structures on the same data set, validation 
indexes, stability assessment, and visual inspection. A global 
approach for evaluating the quality of clustering results 
provided from different clustering algorithms using the relevant 
information available (e.g., the stability, isolation and 
homogeneity of the clusters) was presented in Silva et al. 
(2012). 
 
 
 
 
 
 
 
 
 
 
 
 
 
We used the methodological framework, described in Sousa                   
et al. (2014), in order to evaluate the obtained partitions 
according to measures of validation (adapted for the case of 
similarity measures) based on the values of the proximity 
matrix between elements (internal validation measures). Thus, 
the values of the statistics of levels STAT and DIF (Bacelar-
Nicolau, 1980; Lerman, 1970, 1981), P(I2mod, ∑), and γ 

(Goodman and Kruskal (1954)) indexes (for the partitions into 
three, four, and five clusters), were calculated. The "best" 
cluster is one that presents the largest values of STAT, DIF, and  
γ ,  and the smallest value of the P(I2mod, ∑). Furthermore, the 
values of the Sil* index based on the Silhouette plots 
(Rousseeuw, 1987) and of the U statistics (Mann and Whitney, 
1947), namely the global U index (UG) and the local U index 
(UL) were calculated for the clusters of the most significant 
partition (according to the previous indexes), as described in 
Sousa et al. (2014), and for the a priori partition. The formulae 
of the STAT, DIF, P(I2mod, ∑), and γ indexes, the last two 
ones adapted for the case of similarity measures, can  be found 
in Sousa et al. (2013b). In the case of a cluster-L* we have 
UG=0 and in the case of a ball cluster we have UL=0 (Gordon, 
1999). The best partitionis compared with the a priori partition 
(external information) into four clusters given by a panel of 
human observers. 
 
AHCA of the city temperature interval data set 

 
In this example, we consider the data set given in Guru et al. 
(2004) concerned to the minimum and the maximum monthly 
temperatures of 37 cities in degrees centigrade (city 
temperature interval data set) during a determined year. Table 1 
shows a part of this data matrix. 
 
 
The city temperature interval data set was given to a panel of 
human observers for classification. The a priori partition of the 
cities given by the observers contains four clusters (Guru et al., 
2004), which descriptions and corresponding latitudes are 
shown in Table 2: 
 
Cluster 1: {C2, C3, C4, C5, C6, C8, C11, C12, C15, C17, C19, 
C22, C23, C29, C31}; 
Cluster 2: {C0, C1, C7, C9, C10, C13, C14, C16, C20, C21, 
C24, C25, C26, C27, C28, C30, C33, C34, C35, C36}; 
Cluster 3: {C18}; 
Cluster 4: {C32}. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The cities belonging to cluster 1 are located at latitudes 
between 0º and 40º and the cities included in the cluster 2 are 
mainly located at latitudes between 40º and 60 º. The human 
observers have classified some cities (C1- Athens, C13- Lisbon, 
C27- San Francisco, C28- Seoul and C33- Tokyo), which are 
closer to the sea coast and are located at latitudes between 0 
and 40, in the cluster 2, because those cities have low 

Table 1. Data matrix- Minimum and maximum temperatures of cities in centigrade degrees 
 

Pattern no. Cities Jan. Feb. Mar. ⋯ Oct. Nov. Dec. 

C0 Amsterdam [-4, 4] [-5, 3] [2, 12] ⋯ [5, 15] [1, 10] [-1, 4] 
C1 Athens [6, 12] [6, 12] [8, 16] ⋯ [16, 23] [11, 18] [8, 14] 
C2 Bahrain [13, 19] [14, 19] [17, 23] ⋯ [24, 31] [20, 26] [15, 21] 
C3 Bombay [19, 28] [19, 28] [22, 30] ⋯ [24, 32] [23, 32] [20, 30] 
⋮ ⋮				 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

C33 Tokyo [0, 9] [0, 10] [3, 13] ⋯ [13, 21] [8, 16] [2, 12] 
C34 Toronto [-8, -1] [-8, -1] [-4, 4] ⋯ [6, 14] [-1, 17] [-5, 1] 
C35 Vienna [-2, 1] [-1, 3] [1, 8] ⋯ [7, 13] [2, 7] [1, 3] 
C36 Zurich [-11, 9] [-8, 15] [-7, 18] ⋯ [3, 22] [0, 19] [-11, 8] 
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temperature which is similar to that of the cities which are 
located at latitudes between 40 and 60. “The cities nearer to sea 
coast bear relatively low temperature because of the cool 
breeze from the sea coast and also due to high humidity present 
in the atmosphere” (Guru et al., 2004). Mauritius (the only 
island in this data set) was included in a cluster with only one 
element (singleton) and Tehran in other singleton due to its 
irregular temperature. The main results of the hierarchical 
cluster analysis of the 37 cities are presented in the remaining 
section. 
 

Table 2. Description of a priori partition - city temperature 
interval data set 

 
Cluster 1 Latitude Cluster 2 Latitude 

C2-Bahrain 26°13'N C0-Amsterdam 52°22'N 
C3-Bombay 19°0'N C1-Athens 37°58'N 
C4-Cairo 30°3'N C7-Copenhagen 55°41'N 
C5-Calcutta 22°34'N C9-Frankfurt 50°07'N 
C6-Colombo 6°56'N C10-Geneva 46°12'N 
C8-Dubai 25°15'N C13-Lisbon 38°43'N 
C11- Hong Kong 22°17'N C14-London 51°30'N 
C12- Kuala Lampur 3°8'N C16-Madrid 40°24'N 
C15- Madras 13°05'N C20-Moscow 55°45'N 
C17-Manila 14°35'N C21-Munich 48°08'N 
C19-Mexico 19°26'N C24-New York 42°54'N 
C22-Nairobi 1°17'S C25-Paris 48°51'N 
C23-New Delhi 28°37'N C26-Rome 41°54'N 
C29 - Singapore 1°17'N C27-San Francisco 37°47'N 
C31-Sydney 33°52'S C28-Seoul 37°34'N 
--- --- C30-Stockholm 59°20'N 
--- --- C33-Tokyo 35°41'N 
--- --- C34-Toronto 43°42'N 
--- --- C35-Vienna 48°13'N 
--- --- C36-Zurich 47°22'N 
Cluster 3 Latitude Cluster 4 Latitude 
C18-Mauritius 20°10'S C32-Tehran 35°42'N 

 

Before calculating the values of the �(�, �′)  and ���(�, �′) 
coefficients, the domains ���

	of each variableYj, j=1,…,12 for 

the set E={1, …, 37} of n=37 objects (cities) were decomposed 
into a suitable number of elementary and disjoint intervals.  For 
instance, the observed (interval-type) values of V1 (January) 
are V1(E): {[-4, 4]; [6, 12]; [13, 19]; [19, 28]; [8, 20]; [13, 27]; 
[22, 30]; [-2, 2]; [13, 23]; [-10, 9]; [-3, 5]; [13, 17]; [22, 31]; [8, 
13]; [2, 6]; [20, 30]; [1, 9]; [21, 27]; [22, 28]; [6, 22]; [-13, -6]; 
[-6, 1]; [12, 25]; [6, 21]; [-2, 4]; [1, 7]; [4, 11]; [6, 13]; [0, 7]; 
[23, 30]; [-9, -5]; [20, 30]; [0, 5]; [0, 9]; [-8, -1]; [-2, 1]; [-11, 
9]}. Thus, the domain of variable V1 is the interval ���

= [-13, 

31]. Let u0= -13, u1= -11, u2= -10, u3=-9, u4=-8; u5= -6; u6= -5; 
u7=-4, u8= -3, u9=-2, u10= -1, u11=0, u12=1, u13=2, u14=4, u15=5, 
u16=6, u17=7, u18=8, u19=9, u20=11, u21=12, u22=13, u23=17, 
u24=19, u25=20, u26=21, u27=22, u28=23, u29=25, u30=27, u31=28, 
u32=30, and u33=31 be the 34 distinct values corresponding to 
the lower and upper boundaries of the observed intervals of 
V1(E) that are sorted in ascending order. The interval	���

	is 

decomposed into 33 elementary and disjoint intervals, 

�����,, ���(� = 1, ⋯ ,33)	based on the 34 distinct values, u0, 
…, u33, as follows: 
 

[-13, -11[; [-11, -10[; [-10, -9[; [-9, -8[; [-8, -6[; [-6, -5[; [-5, -
4[; [-4, -3[; [-3, -2[; [-2, -1[; [-1, 0[; [0, 1[; [1, 2[; [2, 4[; [4, 5[; 
[5, 6[; [6, 7[; [7, 8[; [8, 9[; [9, 11[; [11, 12[; [12, 13[; [13, 17[; 
[17, 19[; [19, 20[; [20, 21[; [21, 22[; [22, 23[; [23, 25[; [25, 
27[; [27, 28[; [28, 30[; [30, 31] (see Table 1). For example,  

still in the case of V1 (January), the intervals concerning, 
respectively, to the cities Amsterdam and Athens are the 
following (see Table 3, which entries are ranges of the 
elementary intervals): 
 

Aj=[-4, 4]=[-4, -3[[-3, -2[ [-2, -1[ [-1, 0[ [0, 1[ [1, 2[ [2, 4]; 
Bj= [6, 12]= [6, 7[ [7, 8[[8, 9[ [9, 11[ [11, 12]. 

 
Therefore, proceeding in this way for all other variables, we 
obtained a new data matrix, subdivided into 12 subtables (one 
for each variable), which contain a decomposition of the 
respective initial intervals into elementary intervals. 
 

Table 3. Decomposition into 33 elementary intervals – Variable Y1 
(January) 

 

 [-13, 
-11[ 

[-11, 
-10[ 

⋯ [-4, -
3[ 

[-3, 
-2[ 

⋯ [1, 
2[ 

[2,4
[ 

⋯ [28, 
30[ 

[30, 
31] 

Amsterdam 0 0 ⋯ 1 1 ⋯ 1 2 ⋯ 0 0 
Athens 0 0 ⋯ 0 0 ⋯ 0 0 ⋯ 0 0 

Bahrain 0 0 ⋯ 0 0 ⋯ 0 0 ⋯ 0 0 
Bombay 0 0 ⋯ 0 0 ⋯ 0 0 ⋯ 0 0 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
Tokyo 0 0 ⋯ 0 0 ⋯ 1 2 ⋯ 0 0 

Toronto 0 0 ⋯ 1 1 ⋯ 0 0 ⋯ 0 0 
Vienna 0 0 ⋯ 0 0 ⋯ 0 0 ⋯ 0 0 
Zurich 0 1 ⋯ 1 1 ⋯ 1 2 ⋯ 0 0 

 

Table 4 contains the partitions into three, four, and five clusters 
provided by the probabilistic similarity coefficient,	���(�, �′), 
combined with the three aggregation criteria (SL, AV1, and 
AVB). 
 

In the case of the probabilistic similarity coefficient, 
���(�, �′), the partition into four clusters of the dendrogram 
obtained from the SL method (see Table 4 and Figure 1) is 
identical to that provided by the panel of human observers                
(a priori partition). This partition was also obtained by Guru            
et al. (2004), using a similarity measure for estimating the 
degree of similarity among patterns (described by 
interval type data) in terms of multivalued data, and un 
unconventional agglomerative clustering technique, by 
introducing the concept of mutual similarity value (Guru et al., 
2004). The partition into four clusters provided by the AV1 and 
AVB methods (see Table 4 and Figure 2) it is not the same that 
the a priori partition (others authors (e.g., De Carvalho, 2007) 
also have obtained partitions into four clusters that were not 
identical to that a priori partition). It can be seen that the 
partition into three clusters provided by the 
���(�, �′)	coefficient combined with the three applied 
aggregation criteria is quite close to the a priori partition given 
by the panel of human observers, excepting in what concerns 
the location of city 18, which in the classification given by the 
panel of human observers is a cluster with only one element 
(singleton) [see Figures 1 and 2]. This is also the most 
significant partition (the best partition), according to all applied 
validation indexes, as is shown in Table 5, due to the maximum 
values of STAT (18.9912), DIF (2.3429in the case of AV1 and 
AVB), and  (0.8524), and to the minimum value (0.3176) of 
P(I2mod,). 
 

Cluster 1: {C0, C1, C7, C9, C10, C13, C14, C16, C20, C21, C24, 
C25, C26, C27, C28, C30, C33, C34, C35, C36}; 
Cluster 2: {C32}; 
Cluster 3: {C2, C3, C8, C4,C5, C6, C11, C12, C15, C17, C18, C19, 
C22, C23, C29, C31}. 
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That partition was also the best partition according to the STAT 
(18.6694), DIF (0.4982), and P(I2mod,) (0.1282) indexes 
obtained from the �(�, �′) coefficient combined with the AV1 
and AVB methods. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The partition into four clusters provided by the	���(�, �′) 
coefficient combined with the SL method is identical to the              
a priori partition (the same is not verified in the case of the 
application of the �(�, �′)	coefficient combined with the SL 
method). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4. Partitions into three, four and five clusters - ���(�, �′) 
 

Number of 
clusters 

Methods Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

 
 
3 

���(�, �′)+ SL 
���(�, �′)+AV1 
���(�, �′)+ AVB 

C2, C3, C4, C5, C6, 
C8, C11, C12, C15, 
C17, C18, C19, C22, 
C23, C29, C31 

C0, C1, C7, C9,  C10, C13, 
C14, C16, C20, C21, C24, C25, 
C26,  C27, C28, C30, C33, C34, 
C35, C36 

C32   

 
 
 
 
4 

���(�, �′)+ SL C2, C3, C4, C5, C6, 
C8, C11, C12, C15, 
C17, C19, C22, C23, 
C29, C31 
 
 

C0, C1, C7, C9, C10, C13, C14, 
C16, C20, C21, C24, C25, C26, 
C27, C28, C30, C33, C34, C35, 
C36 

C18 
 
 

C32 
 
 

 

���(�, �′)+AV1 
���(�, �′)+ AVB 

C0, C7, C10, C14, 
C20, C21, C25, C30, 
C34, C35 
 
 

C1, C9, C13, C16, C24, C26, 
C27, C28, C33, C36 

C2, C3, C4, C5, 
C6, C8, C11, 
C12, C15, C17, 
C18, C19, C22, 
C23, C31, C29 

C32 
 
 
 

 

 
 
 
 
 
5 

 
 
���(�, �′)+ SL 

C0, C1, C7, C9, C10, 
C13, C14, C16, C20, 
C21, C24, C25, C26, 
C27, C28, C30, C33, 
C34, C35, C36 

C2, C3, C4, C5, C6, C8, C11, 
C12, C15, C17, C19, C23, C29 
 

C22,  C31 
 
 

C18 
 
 

C32 
 

���(�, �′)+AV1 
���(�, �′)+ AVB 
 

C0, C7, C10, C14, 
C20, C21, C25, C30, 
C34, C35 

C3, C5, C6, C12, C15, C17, 
C29 
 

C1, C9, C13, 
C16, C24, C26, 
C27, C28, C33, 
C36 

C32 C2, C4, C8, 
C11, 
C18, C19, C22, 
C23, C31 

 

Table 5. Values of validation measures for the partitions into three, four, and five clusters 
 

 STAT DIF P(I2mod, )  

 SL AV1/AVB SL AV1 AVB SL AV1/AVB SL AV1/AVB 
5 Clusters 18.5947   15.7538 0.6431 0.7185 0.1887 .3871 .3875 .8484     .8504 
4 Clusters 18.3947   16.6483 -0,2 0.8945 0.8945 .3694 .3700 .8291     .8022 
3 Clusters 18.9912 18.9912 0.5965 2.3429 2.3429 .3176 .3176 .8524 .8524 

 

 
 

Figure 1. Dendrogram obtained by the probabilistic coefficient, ���(�, �′), + SL method (last levels) 
 

 
 

Figure 2. Dendrogram obtained by the probabilistic coefficient, ���(�, �′),+ AV1 method (last levels) 

 

23155                                        International Journal of Current Research, Vol. 7, Issue, 11, pp.23151-23157, November, 2015 



The values of Sil* and of U statistics (UL/UG) for the cluster 2 
belonging to the partition in to three clusters and to the a priori 
partition are, respectively, 0.5270 and 569/4782. Moreover, the 
cluster 1 belonging to the partition into three clusters has a 
higher value of Sil*, and a lower value of U statistics (UL / UG) 
compared to the corresponding ones of the cluster 1 of the 
partition provided by the human observers (Sil*=0.4917; UL/UG 
= 423/2598 versus Sil*=0.4897; UL/UG = 474/2687). According 
with the U statistics of Mann and Whitney (Gordon, 1999), the 
clusters concerning to the partitions into three and to the           
a priori partition into four clusters, with more than one 
element, are neither ball clusters nor l*-clusters, however they 
are dense and well separated clusters, because they present 
relatively high values of the Sil* index. The "best" cluster is 
one that presents the largest value of Sil * and the smallest 
value of the U statistics (UL and UG). Thus, the best partition 
(into three clusters), according to the applied validation 
measures, is also slightly better than the partition into four 
clusters provided by the human panel.  
 

Conclusion 
 

The city temperature interval data set, as well as other 
experiments with different real and artificial interval data sets, 
have shown the usefulness of the weighted generalised affinity, 
�(�, �′), and of two related coefficients, namely, the 
asymptotic standardized weighted generalized affinity 
coefficient by the method of Wald and Wolfowitz, ���(�, �′), 
and the associated probabilistic coefficient, ���(�, �′).		The 
use of the probabilistic coefficient, ���(�, �′),  instead of the 
coefficient �(�, �′), allows us to work with comparable 
similarity values in a probabilistic scale. Moreover, the used 
validation measures are helpful in the selection of the best 
partitions of the elements to be classified. 
 

Global satisfactory results were obtained using our approach, 
and one of the obtained partitions is in complete accordance 
with the partition into four clusters provided by the panel of 
human observers (a priori partition), although it is not the best 
one, according to the applied validation measures. The 
validation measures point to the partition into three clusters as 
the best partition. 
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