
 z 

 
 

 

       
 

 
                                                  
 

 

 

RESEARCH ARTICLE 
 

COMMON FIXED POINT THEOREM IN BANACH SPACE 
 

*,1Aradhana Sharma and 2Gauri Shanker Sao 
 

1Department of Mathematics, Govt. Bilasa Girls P.G.College, Bilaspur (C.G.) 
2Department of Mathematics, Govt.ERR P G Science College, Bilaspur (C.G.) 

 
     

ARTICLE INFO                                          ABSTRACT 
 

 
 
 

 

 

In this paper, we establish the generalization of T-contractive type of mappings on Banach  space. In 
(Huang and Zhang, 2007) Huang and Zhang generalized the concept of metric spaces, replacing the 
set of real numbers by an ordered Banach space.  
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INTRODUCTION 
 

Recently Beiranvand et al. (2009) introduced a new class of contractive mappings. T- contraction and T-contractive extended by 
the Banach’s contraction principle and the Edelstein fixed point theorem.  
 

2. PRELIMINIES  
 
Definition 2.1:A norm on X is a real-valued function ǁ. ǁ: X→R defined on X such that for any x, y ϵX and for λ ϵK  
 
(i) ǁxǁ=0 only if x=0  
(ii) ǁx+y ǁ ≤ ǁx ǁ+ ǁy ǁ  
(iii) ǁ λ x ǁ=| λ|ǁx ǁ  
 

Definition 2.2:Normed linear space is a pair (X,ǁ. ǁ) consisting of a linear space X and a norm ǁ. ǁ  
 

Definition 2.3: A sequence {xn} in a nls X is a Cauchy sequence if for any given �>0 there exits an n0 ϵ N such that  ǁxm-xn ǁ < � 
for m,n≥ n0  
 

Definition 2.4: A norm linear space X is said to be complete if every Cauchy sequence in X converges to an elements of X.  
 

Definition 2.5: A Banach space (X,ǁ. ǁ) is a complete nls.  
 

Definition 2.6 : The Banach fixed point theorem stated that each self mapping T of a complete metric space (X, d) such that 
d(Tx,Ty)< kd(x,y), (x ≠y,0<k<1) has a unique fixed point. the assumption k < 1  
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is nonsuperfluous with k=1 the mapping of this sort need not have a fixed point, however X is compact then T has a unique fixed 
point.  
 
Definition 2.7 : Let X be normed linear space and d(x,y) = ǁx-y ǁ ,x , y ϵ X. If X is complete with respect to the metric d(x,y) , X is 
said to be Banach space.  
 

3. MATERIALS AND METHODS  
 
Theorem: Let CB(X) be closed Banach space where X itself is Banach space, if T : X → X ,  R, S : X → X satisfied  
 

0
22

0
12 xTRxTR nn   =0         and         0

22
0

12 xTSxTS nn   =0 

 

such that there exist subsequences { 0
12 xR n

} , { 0
22 xS n

}   then Rx = x= Sx.  

 
So they have common fixed point.  
 

4. RESULT AND DISCUSION  
 

PROOF: 21 TxTx   ≤ 11 TRxTx  + 21 TRxTRx  + 22 TxTRx   

                                 ≤ 11 TRxTx  + a 21 TxTx  + 22 TxTRx   

  21 TxTx    ≤ 
a1

1
[ 11 TRxTx  + 22 TxTRx  ] 

By considering 22 nx   = 12 nRx   = 0
12 xR n

  

And                    32 nx   = 22 nSx   = 0
22 xS n

       

Therefore  2212   nn TxTx = 0
22

0
12 xTRxTR nn      

                                                    ≤ a  0
12

0
2 xTRxTR nn     

              0
22

0
12 xTRxTR nn   ≤ 

12 na  00 TRxTx            

Similarly    0
22

0
12 xTSxTS nn   ≤ 

12 nb  00 TSxTx   

Hence     0
22

0
12 xTRxTR nn   =0 

Also     1212   mn TxTx =  0
12

0
12 xTRxTR mn    

              ≤ 
a1

1
[ 0

22
0

12 xTRxTR nn    + 0
32

0
22 xTRxTR nn   +  …………. ] 

               ≤ 
a1

1
[

12 na  00 TRxTx  +
22 na  00 TRxTx  +………………..] 

                ≤   
a1

1
[

12 na +
22 na +……………..] 00 TRxTx     

→               0
12

0
12 xTRxTR mn   =0        (Since   00 TRxTx  =0)   

→              0
12 xR n

 =  u  

 →            T 0
12 xR n

 = Tu = 0  

theorem is completed.  
 

5. Conclusion  
 

In this article we have proved the existence of a fixed point in a Banach space and shows that the fixed point is unique.  
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