

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 7, Issue, 11, pp.22113-22116, November, 2015 INTERNATIONAL JOURNAL OF CURRENT RESEARCH

RESEARCH ARTICLE

SHORT NOTE ON THE RECORD OF *OCTOLASMIS COR* (AURIVILLIUS, 1892) IN THE GILLS OF CRAB *SCYLLA SERRATA* FORSKÄL, 1775 AT DIAMOND HARBOUR, WEST BENGAL

*ChitraJayapalan and AninditaGhosh

Scanning Electron Microscopy Unit, Zoological Survey of India, M-Block, New Alipore, Kolkata – 700 053

ARTICLE INFO

ABSTRACT

Article History: Received 27th August, 2015 Received in revised form 14th September, 2015 Accepted 20th October, 2015 Published online 30th November, 2015

Key words:

Octolasmis cor, Barnacle, Scylla serrata, Gill Infestation, West Bengal. Stalked barnacles of the genus Octolasmis Gray 1825 (Poecilasmatidae) are sessile invertebrates frequently found attached to decapods mainly in the branchial chambers of crabs. The main factors that determine the settlement and the distribution of stalked barnacles are water flow, which affects food availability, ventilation and removal of metabolites. *Octolasmiscor* was found attached on the external mouthparts, carapace margins and gill chambers of the crabs. This observation of *Octolasmiscor* attached to *Scylla serrata* is the first time record from the diamond harbour of West Bengal.

Copyright ©2015ChitraJayapalan and AninditaGhosh. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation:Chitra Jayapalan and Anindita Ghosh, 2015. "Short note on the record of *Octolasmis cor* (Aurivillius, 1892) in the gills of crab *Scylla serrata* Forskäl, 1775 at diamond Harbour, West Bengal", *International Journal of Current Research*, 7, (11), 22113-22116.

INTRODUCTION

Octolasmiscor was described by Aurivillius in 1892 as Dichelaspiscor which was collected from the gills of a decapod in South Africa. Mostly they lead a symbiotic life style with the hosts like crabs, lobsters, corals, molluscs, isopods etc. The hosts of octolasmid barnacles are mainly found in shallow water at 10 meters depth; very few are found beneath 1000 m depth. About 32 species of the genus Octolasmishave been identified worldwide of which 10 species viz., O. orthogonia (Darwin, 1851), O. angulata (Aurivillus, 1893), O. bathynomi (Annandale, 1906), O. warwicki (Gray, 1825), O. lowei (Darwin, 1851), O. rhinoceros (Annandale, 1909), O. sessilis (Hoek, 1838), O. sociabilis (Gravier, 1921), O. stella (Annandale, 1909) and O. cor (Aurivillus, 1892) reported from Indian ocean. Stalked barnacles of the genus Octolasmis Gray, 1825 (Poecilasmatidae) are sessile invertebrates frequently found attached to decapods mainly in the branchial chambers of crabs (Jefries and Voris, 1996). Octolasmiscor are mostly found in gills or in branchial chambers of the crabs. The crabs have short life span due to moulting; even then many organisms including octolasmids use the substratum as an alternative hard substrata.

*Corresponding author:ChitraJayapalan

Scanning Electron Microscopy Unit, Zoological Survey of India, M-Block, New Alipore, Kolkata – 700 053 The highest infestation rate of octolasmid barnacles was recorded in the gill chambers of crabs. It has been observed that in case of *O. cor* (Aurivillus, 1892) the rate of infection is less comparatively to other species. It has been observed that larger specimens of crab hosts are more prone to be infested with octolasmid barnacles. Gruvel (1902) described that there are three varieties of octolasmid barnacles which can be found in the same host at a time. They aremostly found in gills or in branchial chambers of the crabs. The crabs have short life span due to moulting; even then many organisms including octolasmids use the substratum as an alternative hard substratum. The present study explore the occurrence of *Octolasmiscor* infestation in *Scylla serrata*, number of individuals in the crabs and seasonal influences.

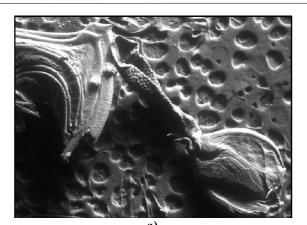
MATERIALS AND METHODS

Heavy infested *Scylla serrata* by the barnacles were noticed and were collected immediately from the local markets of Diamond harbour. With the help of Hand lenses and dissecting microscope infested crabs were observed and picked for investigation. The carapace, mouth parts and the gill chambers were inspected thoroughly in trace of Octolasmis sp. The individuals were removed and were preserved in ethyl alcohol. Total number of crabs infested with octolasmids were sorted separately and counted for the percentage contribution and the cirripede infestation in the external mouthparts, carapace margins and gill chambers of the crabs were also estimated. The barnacles were removed from the crabs and were subjected to taxonomical studies to reveal the species by their morphological features. The detailed morphology of the organisms found attached to the crabs were investigated using scanning electron microscope (Zeiss Evo-18). The surface view and the dissected setae were also subjected. The peduncle, captilum, capitular plate, carina and scutum were noted and their capitular lengths were measured. Setal morphology were also studied (Jeffries and Voris, 1983).

RESULTS AND DISCUSSION

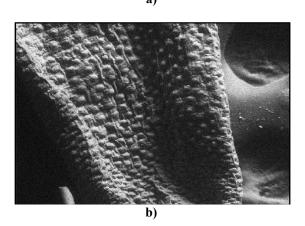
Scylla serrata (mud crabs) are edible crustaceans available in local markets of Diamond Harbour, West Bengal observed with severe infestations of *Octolasmiscor*(Fig. 1a, b). Scanning electron microscopic view reveals the morphological features of *Octolasmiscor*(Fig. 2a, b). The species identified as follows,

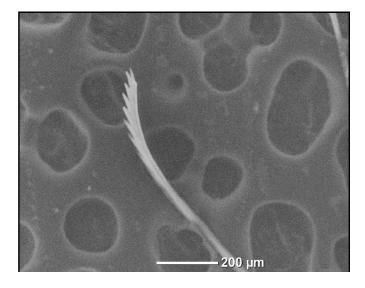
Phylum:Arthropoda Class:Maxillopoda Subclass:Cirripedia Super order:Thoracica Order:LepadiformesBuckeridge and Newman, 2006 Suborder:LepadomorphaPilsbry, 1916 Family:Poecilasmatidae Annandale, 1909 Genus:Octolasmis, Fray, 1825 Species: Octolasmiscor (Aurivillius, 1892)



b)

Fig. 1 a,b. The dissected gills of *Scylla serrata* with severe infestation of *Octolasmiscor*




Fig.2a. SEM view of *Octolasmiscor*attached with gills b) Ornamentation observed in peduncle of *O.cor*

Diagnostic Character

The peduncle is tubular, rough surface with ornamentation which supports and attaches towards the substratum of the host. The capitulum pale yellow colouration of 3 robust capitular plates, the carina and 2 scutum. The mean capitular length is of 2.48 ± 0.15 mm. Scutal basal lobe broad, oblong. Maxillule notched with two large spines on upper notch. Cirri I is smaller and cirri II to VI long and slender. The setal morphology of the cirri represents simple, serrate and multicuspidate types (Fig. 3a, b).

Infestation of Octolasmiscor (Aurivillius, 1892) on Scylla Serrata

Octolasmiscor individuals were attached on the edible crab Scylla serrata were counted to investigate the total no of individuals affected in the single host. From the study, the maximum infestations were registered around 121 individuals / host and the minimum infestation were recorded nearly 36 individuals/host (Fig. 4). Octolasmiscor were also found attached on the external mouthparts, carapace margins and gill chambers of the crabs. Maximum distribution of the Octolasmiscor on the gill surfaces of the host were 121 individuals/ host, mouth parts were infested with 24 individuals/ host and the carapace margins showed 11 individuals of Octolasmiscor found attached with the host crab. Rate of epibiont infestation of Octolasmiscor were recorded to be higher in the gill surfaces of Scylla serrata from the investigation (Fig. 5).

a)

100 µm

b)

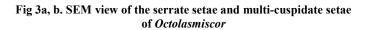
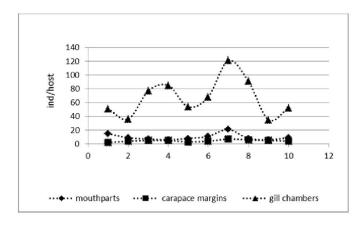



Fig. 4. No of Octolasmiscor individuals observed from the host Scylla serrata

Fig. 5 Rate of infestation by Octolasmiscor occurs in mouth parts, carapace margins and the gill chambers of Scylla serrata

Such infestations were also reported by Kumaravelet al. (2009) that they were observed in the gill surfaces on the chamber floor and adjacent to the incurrent channel openings of Portunuspelagicus and Scylla tranquebarica. The phenomenon epibiosis has been studied by Dinamani and Kurian (1961), Bullock, (1965), Arudpragasan, (1967); Walker (1974); Joel, and Sanjeeva Raj, (1980; 1981), Wahl, (1989), Jeffries et al. (1985; 1992; 1992); Coker (1902); Wahl and Mark, (1999), Voriset al. (2000); Alvarez et al. (2003), Blomsterberget al. (2004), Cordeiro and Costa, (2010). Moreover the movements of the host can optimize epibiont dispersion, gene flow and the hosts movement or breathing generates water currents that improve access to food and remove metabolic residues produced by the epibionts (Wahl, 1989, Key et al., 1997). The main factors that determine the settlement and the distribution of stalked barnacles are water flow, which affects food availability, ventilation and removal of metabolites (Voriset al., 1994; Santos et al., 2000).

Conclusion

Octolasmiscor infestation in Scylla serrata were observed for the first time from the diamond harbour of West Bengal. Still more extensive research on the stalked barnacles on potential hosts of edible and non-edible faunal groups on the coastal environment of West Bengal has to be carried out to reveal the species diversity of the cirripedia and their infestations.

Acknowledgement

The authors thankful to The Director, Zoological Survey of India for scanning electron microscopy and laboratory facilities for the research work.

REFERENCES

- Alvarez, F., A. Celis and J.T. Hoeg. 2003. Microscopic anatomy of settled cypris larvae of Octolasmiscaliformana (Cirripedia: Lepadomorpha) J. Crustacean Biol., 23: 758 -764.
- Arudpragasam, K. D. 1967. Distributions and variations in form of the cerrepedeOctolasmiscor (Aurivillus, 1893) in relation to the respiratory current in its host Scylla serrata. Cevlon J.Sci. (Biol. Sci.), 7 (1 and 2): 105-115.

- Blomsterberg, M., J.T. Hoeg., W. B. Jeffries and N.C. Lagersson 2004. Antennulary sensory organs in cyprids of Octolasmis and Lepas (Crustacea: Thecoastraca: Cirripedia: Thoracica): A scanning electron microscopic study. *Journal of Morphology*, 260: 141 – 153.
- Bullock, J. A. 1965.Variation in the commensal cerripedeOctolasmiscor (Sur,) in relation to its position in the branchial chamber of Scylla serrata (Forskal).Fedn. Mus. J. N. S., 9: 84-95
- Canon, A. T. and M. G. Wheathy, 1992. Physiological effects of an ectocommensal gill barnacle, *Octolasmismulleri*; on gill exchange in the blue crab *Callinectessapidus*. J. Crustacea Biol. 12: 11-18.
- Cardeiro, C.A.M.M. and Costa, T.M. 2010. Infestation rates of the pedunculated barnacle *Octolasmislowei* (Cirripedia: Poecilastomatidae) on the spider crab *Libiniaspinosa* (Decapoda: Majoidea). *Journal of the Marine Biological, Association United Kingdom*90: 315 – 322.
- Coker, R. E., 1902. Notes on a parasite on the gills of edible crabs. *Bull. U. S. Fiss. Comm.*, 21: 401-412.
- Jeffries, W. B., Voris, H. K. Poovachiranon, S. and Heil, L. C. 1995. The life cycle stages of the lepadomorph barnacle *Octolasmiscor*, and the methods for their laboratory culture. *Phuket Mar. Biol. Cent. Res. Bull.*, 60: 29-35
- Jeffries, W. B., Voris, H. K. and Yang, C. M. 1985. Growth of Octolasmiscor (Aurivillus, 1892) on the gills of Scylla serrata (Forskal, 1775).Biol. Bull. Mar. Biol. Lab., Woods Hob., 169 (1): 291-296
- Jeffries, W. B. and H. K. Voris. 1996. A Subject indexed bibliography of the symbiotic barnacles of the genus Octolasmis Gray, 1825 (Crustacea: Cirripedia: Poecilostomatidae). *The Raffles Bullettin of Zoology*, 44: 575 – 592.
- Jeffries, W. B., Voris, H. K. and Poovachiranon, S. 1992. Age of the Mangrove crab *Scylla serrata* at colonization y stalked barnacles of the genus. *Biol. Bull.*, 182 (2): 188-194
- Jeffries, W.B. andVoris, H. K. 1983. The distribution, size and reproduction of the pedunculate barnacle, *Octolasmismulleri* (Coker, 1902) on the blue crab,

Callinectessapidus (Rathbun), 1896). Fieldiana Zool., N.S. 16: 1-10.

- Joel, D. R. and Sanjeeva raj, P. J. 1981. Epizoic fauna o some portunid crabs of the Pulicat Lake. J. Mar. Biol. Ass. India, 23 (1-2): 173-180.
- Joel, D. R. and Sanjeeva Raj, P. J. 1980. Epizoic fauna of some portunid crabs of the Pulicat Lake. In: *Proc. Symp. On Coastal Aqua., Cochin, Ind., Jan 12-18, Abs. mar. Biol. Assn. of India, Cochin*, p.154
- Key, M.M. Jr., Volpe, J.W., Jeffries, W.B. and Voris, H.K. 1997. Barnacles fouling of the blue crab *Callinectessapidus* at Beaufort, North Carolina. *Journal of Crustacean Biology.*,17: 424 – 439.
- Kumaravel, K. Ravichandran, S. Ramesh Kumar, G. 2009. Distribution of Barnacle Octolasmis on the gill region of some edible crabs. Acad. J. Entom., 2 (1): 36-39.
- Santos, S., S.L.S. Bueno and R.M. Shimazu. 2000. Distribution of Octolasmislowei and Carcinemertescarcino philaimminuta in the branchial chamber of Callinectesdanae and Callinectesornatus.Nauplius.,8: 25 – 34.
- Voris, H. K., W. B. Jeffries and S. Poovachiranon, 2000. Size and location relationship of stalked barnacle of the genus Octolasmis on the mangrove crab Scylla serrata. J. Crustacean. Biol., 20 (3): 483-494.
- Voris, H.K., W.B. Jeffries and S. Poovachiranon. 1994. Patterns of distribution of two barnacles species on the mangrove crab, *Scylla serrata*. *Biological Bulletin.*,187: 346-354.
- Wahl, M and Mark, O. 1999. The predominantly facultative nature of epibiosis: experimental and Observational evidence. *Marine ecology Progress Series.*, 187: 59 – 66.
- Wahl, M. 1989. Marine epibiosis. I. Fouling and antifouling: some basic aspects. *Mar. Ecol. Prog. Ser.*, 58: 175 – 189.
- Walker, G. 1974. The occurrences, distribution and attachment of the pedunculate barnacle, *Octolasmismulleri* (Coker) on the gills of crabs, particularly the blue crab, *Callineutessapidus* (Rathbun). *Biol. Bull.*, 147: 678- 689
