

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 7, Issue, 10, pp.21644-21646, October, 2015 INTERNATIONAL JOURNAL OF CURRENT RESEARCH

RESEARCH ARTICLE

KINETIC MODELING OF CATALYTIC REACTION

¹Dr. Prafullachandra P. Tekale, ^{2,*}Dr. Smruti P. Tekale and ³Dr. P. N. Pabrekar

¹Department of Chemistry, G. N. Khalsa College, Matunga, Mumbai, ²Department of Applied Science, Vidyalankar Institute of Technology, Wadala, Mumbai ³Principal, ICLES' Motilal Jhunjhunwala College, Vashi, Navi Mumbai

ARTICLE INFO

ABSTRACT

Article History: Received 27th July, 2015 Received in revised form 25th August, 2015 Accepted 15th September, 2015 Published online 31st October, 2015

Key words:

Kinetic modeling, Hydrogenation, LHHW model.

Copyright © 2015 Dr. Prafullachandra P. Tekale et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Dr. Prafullachandra P. Tekale, Dr. Smruti P. Tekale and Dr. P. N. Pabrekar, 2015. "Kinetic modeling of catalytic reaction", *International Journal of Current Research*, 7, (10), 21644-21646.

INTRODUCTION

Chemical engineering processes are designed to transform raw materials to value added products via chemical reactions (Ranade 2002). Various engineering tools are used to understand the reaction mechanism (Elena et al., 2009). The first step would be systematic study of the reaction. Different kinetic parameters are varied to find the optimum reaction conditions where the conversion of the reactant is maximum. Based on this data a kinetic model is developed (Meyer et al., 2009, Stanislaus et al., 1994, Tekale et al., 2013). This facilitates the reaction engineers to carry the process to production level.

Experimental

A systematic study of the hydrogenation reaction of phenol was carried out using titnia supported ruthenium catalyst at 323 K and 2.07 Mpa hydrogen pressure.

RESULT AND DISCUSSION

Kinetic model based on LHHW approach

The effect of speed of agitation on hydrotreatment of phenol was studied.

*Corresponding author: Dr. Smruti P. Tekale

Department of Applied Science, Vidyalankar Institute of Technology, Wadala, Mumbai At a speed of 1200 rpm, diffusion resistances were found to be absent. Also intraparticle diffusion was found to be absent. Hence an attempt was made to develop an intrinsic rate expression for phenol hydrogenation based on the Langmuir-Hinshelwood approach.

Hydrotreatment of phenol can be represented as follows:

Consider that the reaction occurs by the following series of elementary steps.

• Reversible adsorption of phenol.

Chemical kinetic modelling is a concept for modelling chemical reactions by studying the reaction

mechanism. The hydrogenation reaction of phenol was carried out using titnia supported ruthenium

catalyst at 323 K and 2.07 Mpa hydrogen pressure. A Langmuir- data and a fundamental modeling

approach that will enhance understanding of the reaction rate equations. Hinshelwood-Hougen-

Watson (LHHW) model was proposed. The study provides both extensive and data and a

fundamental modeling approach that will enhance understanding of the reaction rate equations.

- Reversible adsorption of hydrogen by a dissociative mechanism.
- Surface reaction between phenol and hydrogen adsorbed on the same type of active sites.
- Reversible reaction with more hydrogen further to form an intermediate.
- Fast reaction to give cyclohexanol.

The individual reactions according to this mechanism are:

Assuming stationary steady state hypothesis, adsorption of A can be shown as

$$\mathbf{k}_{1} \mathbf{C}_{\mathbf{A}} \boldsymbol{\varnothing}_{\mathbf{v}} = \mathbf{k}_{-1} \boldsymbol{\varnothing}_{\mathbf{A}}$$

where , \mathcal{O}_v = Fraction of vacant active sites

where,

$$K_A = \frac{k_1}{k_{-1}}$$
 Adsorption equilibrium constant for A.

Adsorption of B

where,

 $K_{\rm B} = \frac{k_2}{k_{-2}}$ = Adsorption equilibrium constant for B.

Desorption of D

 $k_5 \varnothing_D = k_{-5} C_D \varnothing_v$

where, $K_D = \frac{k_{-5}}{k_5}$ = Adsorption equilibrium constant for D.

For step 4 : $k_4 \otimes_B \otimes_C = k_{-4} C_D \otimes_v$

where

$$K_C = \frac{\mathbf{k}_4}{\mathbf{k}_{-4}}$$

From equation 1, 2 and 3 we get

$$\mathscr{O}_{C} = \frac{K_{D}C_{D}\mathscr{O}_{V}^{2}}{K_{C}(K_{B}C_{B})^{1/2}\mathscr{O}_{V}}$$

$$\mathscr{O}_{C} = \frac{K_{D}C_{D}\mathscr{O}_{V}}{K_{C}(K_{B}C_{B})^{1/2}} (4)$$

Since

Assuming surface reaction between adsorbed phenol and hydrogen to be rate controlling

$$\begin{aligned} \mathbf{r}_{\text{overall}} &= \mathbf{k}_{3} \ \varnothing_{A} \ \varnothing_{B} \\ &= \mathbf{k}_{3} \mathbf{K}_{A} \mathbf{C}_{A} \ (\mathbf{K}_{B} \mathbf{C}_{B})^{1/2} \ \ \varnothing_{v}^{2} \\ \mathbf{r}_{\text{overall}} &= \frac{\mathbf{k}_{3} \mathbf{K}_{A} (\mathbf{K}_{B})^{1/2} \ \ (\mathbf{K}_{B} \mathbf{C}_{B})^{1/2} + \frac{\mathbf{K}_{D}}{\mathbf{K}_{C} \ (\mathbf{K}_{B})^{1/2}} \mathbf{C}_{D} \mathbf{C}_{B}^{-1/2} + \mathbf{K}_{D} \mathbf{C}_{D} \mathbf{I}^{2} \\ & \dots (7) \end{aligned}$$

Assuming product adsorption to be weak, equation 7 can be simplified to the form

$$\mathbf{r}_{\text{overall}} = \frac{\mathbf{k}_{3} \cdot \mathbf{K}_{A} (\mathbf{K}_{B})^{1/2} \quad \mathbf{C}_{A} \mathbf{C}_{B}^{1/2}}{\left[1 + \mathbf{K}_{A} \mathbf{C}_{A} + (\mathbf{K}_{B} \mathbf{C}_{B})^{1/2}\right]^{2}}$$
(8)

Equation 8 can be simplified further if we consider initial rates (r_0) only.

where

$$P = \frac{(1 + (K_B C_B)^{1/2})}{[k_3 K_A (K_B C_B)^{1/2}]^{1/2}}$$
(10)

$$Q = \frac{K_{A}}{[k_{3} K_{A} (K_{B} C_{B})^{1/2}]^{1/2}} = \frac{1}{[k_{3} (K_{B} C_{B})^{1/2}]^{1/2}}$$
(11)

Thus

$$r_{o} = \frac{C_{A}}{\left[P + Q C_{A}\right]^{2}}$$

Rearranging

$$[P + Q C_A]^2 = \frac{C_A}{r_0}$$
$$[P + Q C_A] = \sqrt{\frac{C_A}{r_0}}$$
$$P + Q C_A = R \text{ Where } R = \sqrt{\frac{C_A}{r_0}}$$

Thus $R = P + Q C_A$

Thus a linear form is obtained.

Table 1. Comparison between observed and predicted values of initial rates by LHHW model

Temperature K	P _{H2} MPa	P _{sec} ^{0.5}	Q	$r_{observed} \propto 10^{-5}$	r predicted x 10 ⁻⁵
323	2.07	18.01	269.38	5	4.88
348	2.07	11.39	224.40	9	8.55
373	2.07	9.10	232.42	10	9.29

Conclusion

P and Q can be determined by using Least Square Method of data correlation i.e. by minimizing the square of the deviations between R and P + Q C_A. Value of R can be calculated for each nth set of data. Also initial rates can be determined experimentally to check whether the experimental data fits into the model. Table 1 shows the values of P and Q at different temperature. Comparison of the initial rates showed that the observed values and the predicted values based on the above model are in good agreement. Thus the model can be validated.

REFERENCES

- Elena Díaz, José A. Casas, Ángel F. Mohedano, Luisa Calvo, Miguel A. Gilarranz and Juan J. Rodríguez, 2009. *Ind. Eng. Chem. Res.*, 48, 3351.
- Meyer C.I., Marchi A.J., Monzon A., Garetto T.F., 2009. Applied Catalysis, 367, 122.
- Ranade, V., 2002. Computational Flow Modeling for Chemical Reactor Engineering, *Academic Press Publication*, pp 403.
- Stanislaus A. and Cooper B. H., 1994. Catalysis Reviews: Science and Engineering, pp75.
- Tekale S. and Tekale P., 2013. Scholars Journal of Engineering and Technology, 1, 187.

.....(12)